IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223001366.html
   My bibliography  Save this article

Combustion characteristics and reactions of stacked wet pulverized magnesium

Author

Listed:
  • Xiao, Qiuping
  • Zhang, Zhiwei
  • Shen, Xiaobo
  • Cai, Chenren
  • Ma, Pan
  • Li, Yuehua
  • Chen, Wanghua

Abstract

Experiments were conducted to investigate the combustion of stacked wet pulverized magnesium. The flame spread over the stack was imaged by infrared camera. The flame shape, flame height, flame spread speed and combustion duration were extracted from infrared images and analyzed. It turned out that the flame spread behavior was closely related to the particle size and moisture content. The smallest particle size at 27 μm had the most violent combustion compared to 61 μm and 90 μm at the same moisture content. With constant particle size, the flame intensity was reinforced as increasing the moisture content reaching the maximum between 20% and 25%. The flame spread would be attenuated instead with higher moisture content. It was believed to be resulted from the competition of chemical (positive) and thermal (negative) effect of water on magnesium combustion. The combustion process and reactions were scrutinized through direct observation and characterization of collected products. The product would either remain original prism-like strip shape or break down to scattered powders. During flame spread, the magnesium would react with oxygen, nitrogen, carbon dioxide and water in air yielding products with disparate colors. Finally, the combustion mechanism was deeply interpreted based on product morphology and reaction analysis.

Suggested Citation

  • Xiao, Qiuping & Zhang, Zhiwei & Shen, Xiaobo & Cai, Chenren & Ma, Pan & Li, Yuehua & Chen, Wanghua, 2023. "Combustion characteristics and reactions of stacked wet pulverized magnesium," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223001366
    DOI: 10.1016/j.energy.2023.126742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223001366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bei & Liu, Gang & Bi, Ming-Shu & Li, Zhen-Bao & Han, Bing & Shu, Chi-Min, 2021. "Self-ignition risk classification for coal dust layers of three coal types on a hot surface," Energy, Elsevier, vol. 216(C).
    2. Zhao, Jinlong & Zhang, Xiang & Zhang, Jianping & Wang, Wei & Chen, Changkun, 2022. "Experimental study on the flame length and burning behaviors of pool fires with different ullage heights," Energy, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Yun-Ting & Yang, Yi & Pan, Yong & Shu, Chi-Min, 2023. "Catalytic effects of magnesium-transition metal (Fe and Ni) hydrides on oxygen and nitrogen reduction: A case study of explosive characteristics and their environmental contaminants," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Zhenhua & Wang, Zhirong & Zhao, Kun, 2023. "Flame stabilization characteristics of turbulent hydrogen jet flame diluted by nitrogen," Energy, Elsevier, vol. 283(C).
    2. Shi, Xueqiang & Wu, Hao & Jin, Penggang & Zhang, Yutao & Zhang, Yuanbo & Jiao, Fengyuan & Zhang, Yun & Cao, Weiguo, 2023. "On the influence of material and shape of the hot particles on the ignition characteristics of coal dust," Energy, Elsevier, vol. 281(C).
    3. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
    4. Chen, Jian & Wang, Zhenghui & Zhang, Yanni & Li, Yang & Tam, Wai Cheong & Kong, Depeng & Deng, Jun, 2024. "New insights into the ignition characteristics of liquid fuels on hot surfaces based on TG-FTIR," Applied Energy, Elsevier, vol. 360(C).
    5. Hou, Fei & Zhong, Xiaoxing & Zanoni, Marco A.B. & Rashwan, Tarek L. & Torero, José L., 2024. "Multi-step scheme and thermal effects of coal smouldering under various oxygen-limited conditions," Energy, Elsevier, vol. 299(C).
    6. Wang, Hui & Xie, Jingna & Xie, Jun & Jiang, Hehe & Wen, Yongzan & Huang, Wanpeng & Wang, Gang & Jiang, Bingyou & Zhang, Chao, 2022. "Effect of critical micelle concentration of imidazole ionic liquids in aqueous solutions on the wettability of anthracite," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223001366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.