IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027918.html
   My bibliography  Save this article

Distribution of unfrozen water and heat transfer mechanism during thawing of liquid nitrogen immersed coal

Author

Listed:
  • Qin, Lei
  • Lin, Siheng
  • Lin, Haifei
  • Xue, Zitong
  • Wang, Weikai
  • Zhang, Xian
  • Li, Shugang

Abstract

The content and distribution of pore unfrozen water directly reflect the coal thawing process. It is the key to break through the evolution of coal pore structure under low temperature to study the pore ice melting speed. Taking bituminous coal in Yuan Zhuang, China as the research object, this paper studied pore thawing characteristics of coal samples with different liquid nitrogen freezing time through nuclear magnetic resonance technology. The experimental results clearly demonstrate that appropriate liquid nitrogen freezing time could greatly expand the macropore of bituminous coal, while the expansion effect of micropore and mesopore was less affected by the freezing time. As the freezing time increased, the pores and pore throats of saturated bituminous coal underwent two phases of ice-water transition expansion and liquid nitrogen low-temperature shrinkage. There were differences in the local thermal conductivity of coal samples with different liquid nitrogen freezing time, resulting in different thawing speeds of pore water at the same thawing temperature. When the freezing time increased, the thermal conductivity of coal samples increased due to the pore freezing shrinkage, which can greatly improve the thawing speed of coal samples.

Suggested Citation

  • Qin, Lei & Lin, Siheng & Lin, Haifei & Xue, Zitong & Wang, Weikai & Zhang, Xian & Li, Shugang, 2023. "Distribution of unfrozen water and heat transfer mechanism during thawing of liquid nitrogen immersed coal," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027918
    DOI: 10.1016/j.energy.2022.125905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wei & Wang, Chunguang & Guo, Tiankui & He, Jiayuan & Zhang, Le & Chen, Shaojie & Qu, Zhanqing, 2021. "Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress," Energy, Elsevier, vol. 221(C).
    2. Li, Jun & Huang, Qiming & Wang, Gang & Wang, Enmao & Ju, Shuang & Qin, Cunli, 2022. "Experimental study of effect of slickwater fracturing on coal pore structure and methane adsorption," Energy, Elsevier, vol. 239(PE).
    3. Xu, Jizhao & Zhai, Cheng & Ranjith, Pathegama Gamage & Sang, Shuxun & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2022. "Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shumin & Sun, Haitao & Zhang, Dongming & Yang, Kun & Li, Xuelong & Wang, Dengke & Li, Yaning, 2023. "Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Song & Zhou, Jian & Zhang, Luqing & Han, Zhenhua & Kong, Yanlong, 2024. "Numerical insight into hydraulic fracture propagation in hot dry rock with complex natural fracture networks via fluid-solid coupling grain-based modeling," Energy, Elsevier, vol. 295(C).
    2. Yue, Jiwei & Ma, Yankun & Wang, Zhaofeng & Zhang, Xi & Wang, Long & Shen, Xiaojing, 2023. "Characteristics of water migration during spontaneous imbibition in anisotropic coal," Energy, Elsevier, vol. 263(PE).
    3. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    4. Bu, Yun-chuan & Niu, Hui-yong & Wang, Tao & Yang, Yan-xiao & Qiu, Tian, 2024. "Combustion characteristics of the thermal-mechanical coupling of broken coal in multiple atmospheres and the re-ignition laws of residual coal," Energy, Elsevier, vol. 299(C).
    5. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    6. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    7. Qu, Hai & Li, Chengying & Chen, Xiangjun & Liu, Xu & Guo, Ruichang & Liu, Ying, 2023. "LN cooling on mechanical properties and fracture characteristics of hot dry granites involving ANN prediction," Renewable Energy, Elsevier, vol. 216(C).
    8. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Mechanical degradation model of porous coal with water intrusion," Energy, Elsevier, vol. 278(C).
    9. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    10. Wen, Hu & Mi, Wansheng & Fan, Shixing & Liu, Mingyang & Cheng, Xiaojiao & Wang, Hu, 2023. "Determining the reasonable volume required to inject liquid CO2 into a single hole and displace CH4 within the coal seam in bedding boreholes: case study of SangShuPing coal mine," Energy, Elsevier, vol. 266(C).
    11. Wang, Yihan & Yang, Wei & Yang, Wenming & Luo, Liming & lyu, Jieyao, 2024. "Effect of AES anionic surfactant on the microstructure and wettability of coal," Energy, Elsevier, vol. 289(C).
    12. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    13. Aliyu, Musa D. & Finkbeiner, Thomas & Chen, Hua-Peng & Archer, Rosalind A., 2023. "A three-dimensional investigation of the thermoelastic effect in an enhanced geothermal system reservoir," Energy, Elsevier, vol. 262(PA).
    14. Lin, Haifei & Li, Botao & Li, Shugang & Qin, Lei & Wei, Zongyong & Wang, Pei & Luo, Rongwei, 2023. "Numerical investigation of temperature distribution and thermal damage of heterogeneous coal under liquid nitrogen freezing," Energy, Elsevier, vol. 267(C).
    15. Li, Yuwei & Peng, Genbo & Tang, Jizhou & Zhang, Jun & Zhao, Wanchun & Liu, Bo & Pan, Yishan, 2023. "Thermo-hydro-mechanical coupling simulation for fracture propagation in CO2 fracturing based on phase-field model," Energy, Elsevier, vol. 284(C).
    16. Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).
    17. Shi, Yu & Xu, Fuqiang & Song, Xianzhi & Wang, Gaosheng & Zuo, Yinhui & Li, Xiaojiang & Ji, Jiayan, 2023. "Rock damage evolution in the production process of the enhanced geothermal systems considering thermal-hydrological-mechanical and damage (THM-D)," Energy, Elsevier, vol. 285(C).
    18. Huaibao Chu & Donghui Wang & Xiaolin Yang & Mengfei Yu & Bo Sun & Shaoyang Yan & Guangran Zhang & Jie Xu, 2023. "Mechanism of Nozzle Position Affecting Coalbed Methane Mining in High-Pressure Air Blasting," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    19. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).
    20. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.