IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v25y2000i2p105-129.html
   My bibliography  Save this article

Exergy based approach for process synthesis

Author

Listed:
  • Sorin, M.
  • Hammache, A.
  • Diallo, O.

Abstract

The purpose of this study is to develop a new procedure for process synthesis based on a reducible superstructure and exergy load distribution analysis. The latter makes it possible to evaluate the impact of each competitive process included in the superstructure according to the specific performance criterion of the overall flowsheet. This criterion, utilizable exergy coefficient, is a function of three important aspects of the process design: efficient use of raw materials, energy efficiency and waste reduction. The procedure starts by building a specific reducible structure of the process flowsheet called the “competitive process” superstructure. The exergy load distribution analysis is carried out on the “competitive process” superstructure to reduce it to a final optimal flowsheet topology. It includes two steps. In the first step, only the alternatives with the highest impact on the utilizable exergy coefficient of the overall flowsheet are kept for subsequent analysis. In the next step, the distribution of exergy loads from the less efficient units to the more efficient ones makes it possible to relocate the units inside the flowsheet. The new procedure is tested for the design of a benzene synthesis chemical plant and is compared with previously published solutions found by the hierarchic and mathematical methods. The resulting flowsheet for benzene synthesis is different from the flowsheets found by the hierarchic and mathematical methods and consumes the least amount of raw materials.

Suggested Citation

  • Sorin, M. & Hammache, A. & Diallo, O., 2000. "Exergy based approach for process synthesis," Energy, Elsevier, vol. 25(2), pages 105-129.
  • Handle: RePEc:eee:energy:v:25:y:2000:i:2:p:105-129
    DOI: 10.1016/S0360-5442(99)00062-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544299000626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(99)00062-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorin, M.V. & Brodyansky, V.M., 1992. "A method for thermodynamic optimization—I. Theory and application to an ammonia-synthesis plant," Energy, Elsevier, vol. 17(11), pages 1019-1031.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castro, M.B.G. & Remmerswaal, J.A.M. & Brezet, J.C. & Reuter, M.A., 2007. "Exergy losses during recycling and the resource efficiency of product systems," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 219-233.
    2. Jankowiak, Lena & Jonkman, Jochem & Rossier-Miranda, Francisco J. & van der Goot, Atze Jan & Boom, Remko M., 2014. "Exergy driven process synthesis for isoflavone recovery from okara," Energy, Elsevier, vol. 74(C), pages 471-483.
    3. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    4. Mateos-Espejel, Enrique & Savulescu, Luciana & Maréchal, François & Paris, Jean, 2010. "Systems interactions analysis for the energy efficiency improvement of a Kraft process," Energy, Elsevier, vol. 35(12), pages 5132-5142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
    2. Camilo Andrés Guerrero-Martin & Juan Sebastián Fernández-Ramírez & Jaime Eduardo Arturo-Calvache & Harvey Andrés Milquez-Sanabria & Fernando Antonio da Silva Fernandes & Vando José Costa Gomes & Wanes, 2023. "Exergy Load Distribution Analysis Applied to the Dehydration of Ethanol by Extractive Distillation," Energies, MDPI, vol. 16(8), pages 1-14, April.
    3. El-Shafie, Mostafa & Kambara, Shinji & Hayakawa, Yukio & Hussien, A.A., 2021. "Integration between energy and exergy analyses to assess the performance of furnace regenerative and ammonia decomposition systems," Renewable Energy, Elsevier, vol. 175(C), pages 232-243.
    4. Penkuhn, Mathias & Tsatsaronis, George, 2017. "Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis," Energy, Elsevier, vol. 137(C), pages 854-864.
    5. Teles dos Santos, Moisés & Park, Song Won, 2013. "Sustainability and biophysics basis of technical and economic processes: A survey of the reconciliation by thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 261-271.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:25:y:2000:i:2:p:105-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.