IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics0360544222016644.html
   My bibliography  Save this article

Real-time detection of wind power abnormal data based on semi-supervised learning Robust Random Cut Forest

Author

Listed:
  • Dong, Mi
  • Sun, Mingren
  • Song, Dongran
  • Huang, Liansheng
  • Yang, Jian
  • Joo, Young Hoon

Abstract

Due to extreme weather or wind turbine (WT) fault, WTs often collects abnormal data, which often interferes with the real-time control strategy of WT. To detect the abnormal data in real time, a detection framework suitable for wind power data is proposed, integrating the semi-supervised learning mechanism into the Robust Random Cut Forest algorithm. To do so, the normal data around the wind power curve are firstly selected and used to establish the structure model of normal data, considering the magnitude orders and distribution of different features. In each sample, the new sample data are inserted into the model, of which the complexity change is compared with a dynamic threshold, so as to judge whether the new sample data are abnormal. To reduce the dependence on the selection of the labeled normal data in modelling, it is presented a real-time model updating strategy based on self-training idea in semi-supervised learning. The experimental results show that the detection accuracy of the proposed method can reach 95% with only 1000 groups of the labeled normal data, and the detection time of a single sample is only 50 ms, which can detect abnormal data in real time for facilitating control strategy and other work.

Suggested Citation

  • Dong, Mi & Sun, Mingren & Song, Dongran & Huang, Liansheng & Yang, Jian & Joo, Young Hoon, 2022. "Real-time detection of wind power abnormal data based on semi-supervised learning Robust Random Cut Forest," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016644
    DOI: 10.1016/j.energy.2022.124761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
    2. Lap-Arparat, Pongpak & Leephakpreeda, Thananchai, 2019. "Real-time maximized power generation of vertical axis wind turbines based on characteristic curves of power coefficients via fuzzy pulse width modulation load regulation," Energy, Elsevier, vol. 182(C), pages 975-987.
    3. Bakdi, Azzeddine & Kouadri, Abdelmalek & Mekhilef, Saad, 2019. "A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 546-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Ke & Lu, Shilei & Han, Zhao & Yuan, Jianjuan, 2023. "Research on heat consumption detection, restoration and prediction methods for discontinuous heating substation," Energy, Elsevier, vol. 266(C).
    2. Dong, Fuxiang & Wang, Jiangjiang & Xu, Hangwei & Zhang, Xutao, 2024. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties," Energy, Elsevier, vol. 300(C).
    3. Liang, Guoyuan & Su, Yahao & Wu, Xinyu & Ma, Jiajun & Long, Huan & Song, Zhe, 2023. "Abnormal data cleaning for wind turbines by image segmentation based on active shape model and class uncertainty," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    2. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    3. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    5. Abdelmalek, Samir & Dali, Ali & Bakdi, Azzeddine & Bettayeb, Maamar, 2020. "Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters," Energy, Elsevier, vol. 213(C).
    6. Korkos, Panagiotis & Linjama, Matti & Kleemola, Jaakko & Lehtovaara, Arto, 2022. "Data annotation and feature extraction in fault detection in a wind turbine hydraulic pitch system," Renewable Energy, Elsevier, vol. 185(C), pages 692-703.
    7. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    8. Aktaş, Ahmet & Kırçiçek, Yağmur, 2020. "A novel optimal energy management strategy for offshore wind/marine current/battery/ultracapacitor hybrid renewable energy system," Energy, Elsevier, vol. 199(C).
    9. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    10. Zhengnan Hou & Xiaoxiao Lv & Shengxian Zhuang, 2021. "Optimized Extreme Learning Machine-Based Main Bearing Temperature Monitoring Considering Ambient Conditions’ Effects," Energies, MDPI, vol. 14(22), pages 1-15, November.
    11. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    12. Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).
    13. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    14. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    15. Kashif Sohail & Hooman Farzaneh, 2022. "Model for Optimal Power Coefficient Tracking and Loss Reduction of the Wind Turbine Systems," Energies, MDPI, vol. 15(11), pages 1-19, June.
    16. Fathy, Ahmed & Rezk, Hegazy & Yousri, Dalia & Kandil, Tarek & Abo-Khalil, Ahmed G., 2022. "Real-time bald eagle search approach for tracking the maximum generated power of wind energy conversion system," Energy, Elsevier, vol. 249(C).
    17. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    18. Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Liu, Yichao & Ferrari, Riccardo & Wu, Ping & Jiang, Xiaoli & Li, Sunwei & Wingerden, Jan-Willem van, 2021. "Fault diagnosis of the 10MW Floating Offshore Wind Turbine Benchmark: A mixed model and signal-based approach," Renewable Energy, Elsevier, vol. 164(C), pages 391-406.
    20. Panagiotis Korkos & Jaakko Kleemola & Matti Linjama & Arto Lehtovaara, 2022. "Representation Learning for Detecting the Faults in a Wind Turbine Hydraulic Pitch System Using Deep Learning," Energies, MDPI, vol. 15(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.