IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6197-d1225644.html
   My bibliography  Save this article

Supplementary Control of Conventional Coordinated Control for 1000 MW Ultra-Supercritical Thermal Power Plant Using One-Step Ahead Control

Author

Listed:
  • Hyuk Choi

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea)

  • Yeongseok Choi

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea)

  • Un-Chul Moon

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea)

  • Kwang Y. Lee

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798-7356, USA
    Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea)

Abstract

The intermittence of renewable energy sources increases the importance of the effective load-tracking ability of power plants. Coordinated control between boiler and turbine systems is the uppermost layer of a thermal power plant control to follow the load demand. In this paper, a supplementary controller is proposed based on the One-Step Ahead strategy for coordinated control of thermal power plants. After a plant model is developed offline from a step response test, the optimized control of the One-Step Ahead strategy is applied to the boiler feed-forward (BFF) signal to control the electric power output and the main steam pressure simultaneously. Simulation with a 1000 MW ultra-supercritical (USC) once-through type power plant is performed. The results show that the error of Mega-Watt Output ( MWO ) was reduced to 78~95%, and settling time was reduced to 64~79% from conventional coordinated control by adding the proposed supplementary controller.

Suggested Citation

  • Hyuk Choi & Yeongseok Choi & Un-Chul Moon & Kwang Y. Lee, 2023. "Supplementary Control of Conventional Coordinated Control for 1000 MW Ultra-Supercritical Thermal Power Plant Using One-Step Ahead Control," Energies, MDPI, vol. 16(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6197-:d:1225644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhihuai Xiao & Suili Meng & Na Lu & O. P. Malik, 2015. "One-Step-Ahead Predictive Control for Hydroturbine Governor," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, September.
    2. Zhu, Hengyi & Tan, Peng & He, Ziqian & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2022. "Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network," Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyuk Choi & Ju-Hong Lee & Ji-Hoon Yu & Un-Chul Moon & Mi-Jong Kim & Kwang Y. Lee, 2023. "One-Step Ahead Control Using Online Interpolated Transfer Function for Supplementary Control of Air-Fuel Ratio in Thermal Power Plants," Energies, MDPI, vol. 16(21), pages 1-18, November.
    2. Jiajun Du & Yilong Li & Yonggang Zhao & Yaodong Da & Defu Che, 2024. "Numerical Study of Supercritical Opposed Wall-Fired Boiler Furnace Temperature and High-Temperature Heating Surface Stress under Variable Load Operation," Energies, MDPI, vol. 17(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Hou, Guolian & Huang, Ting & Jiang, Hao & Cao, Huan & Zhang, Tianhao & Zhang, Jianhua & Gao, He & Liu, Yong & Zhou, Zhenhua & An, Zhenyi, 2024. "A flexible and deep peak shaving scheme for combined heat and power plant under full operating conditions," Energy, Elsevier, vol. 299(C).
    3. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    4. Chen, Jinbao & Liu, Shaohua & Wang, Yunhe & Hu, Wenqing & Zou, Yidong & Zheng, Yang & Xiao, Zhihuai, 2024. "Generalized predictive control application scheme for nonlinear hydro-turbine regulation system: Based on a precise novel control structure," Energy, Elsevier, vol. 296(C).
    5. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6197-:d:1225644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.