IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011082.html
   My bibliography  Save this article

Development of Ni-doped Fe/Ca catalyst to be used for hydrogen-rich syngas production during medicine residue pyrolysis

Author

Listed:
  • Deng, Jin
  • Liu, Ziliang
  • Qin, Tao
  • Chen, Xin
  • Li, Kuo
  • Meng, Linshuai
  • Zhao, Yan
  • Zhou, Yujie
  • Yuan, Shenfu

Abstract

In this work, the catalytic pyrolysis of herbal residues (HR) by Ni–Fe/Ca catalysts and the effects of intrinsic ash and heating rate on the activity of Ni–Fe/Ca catalysts were investigated in a fixed-bed reactor. The results showed that the strong interaction of Fe and Ca formed Ca2Fe2O5, which inhibited the formation of CaCO3, shifted the weakly and moderately acidic sites to high temperatures, promoted the conversion of tar and char, and inhibited the formation of CO2. The H2 yield increased to 54.6 mL/g at 5% Fe/Ca catalyst. The addition of Ni to Fe/Ca improved the catalyst dispersion and promoted the adsorption of alkaline sites, while Ni formed a stable Fe3Ni2 alloy with Fe. The yields of H2 and CO increased from 54.6 mL/g and 63.4 mL/g (0.5% Fe/Ca) to 95.5 mL/g and 70.0 mL/g (0.5% Ni–Fe/Ca), respectively. The CO2 generation was suppressed at high temperatures and the calorific value of pyrolysis gas was significantly increased. Moreover, the acid wash pretreatment improved the tar yield, the alkaline sites in the Ni–Fe/Ca catalyst contributed to the conversion of aromatics and the reforming of CO2, and the presence of AAEMs promoted the redox reaction between gas and solid. The increase in the heating rate (100 °C/min) was beneficial to improve the activity of the Ni–Fe/Ca catalyst. The yields of H2 and CO reached 121.7 mL/g and 71.9 mL/g, respectively.

Suggested Citation

  • Deng, Jin & Liu, Ziliang & Qin, Tao & Chen, Xin & Li, Kuo & Meng, Linshuai & Zhao, Yan & Zhou, Yujie & Yuan, Shenfu, 2022. "Development of Ni-doped Fe/Ca catalyst to be used for hydrogen-rich syngas production during medicine residue pyrolysis," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011082
    DOI: 10.1016/j.energy.2022.124205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    2. Sun, Zhao & Chen, Shiyi & Russell, Christopher K. & Hu, Jun & Rony, Asif H. & Tan, Gang & Chen, Aimin & Duan, Lunbo & Boman, John & Tang, Jinke & Chien, TeYu & Fan, Maohong & Xiang, Wenguo, 2018. "Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms," Applied Energy, Elsevier, vol. 212(C), pages 931-943.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Chen & Zhang, Xitong & Gao, Ying & Lin, Yunhao & Xu, Jiayu & Zhu, Chong & Zhu, Yuezhao, 2021. "Parametric study of catalytic co-gasification of cotton stalk and aqueous phase from wheat straw using hydrothermal carbonation," Energy, Elsevier, vol. 216(C).
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    4. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    5. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    6. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    7. Sun, Zhao & Hu, Chenfeng & Zhang, Rongjun & Li, Hongwei & Wu, Yu & Sun, Zhiqiang, 2023. "Simulation of the deoxygenated and decarburized biomass cascade utilization system for comprehensive upgrading of green hydrogen generation," Renewable Energy, Elsevier, vol. 219(P2).
    8. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    9. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    11. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    12. Kobori, Takahiro & Yoshikawa, Kunio & Ismail, Tamer M. & Yasser, T.M. & García, Abraham Castro & Kanazawa, Kiryu & Takahashi, Fumitake, 2022. "Effect of electron injection on oxidative pyrolysis of cellulose and polypropylene," Applied Energy, Elsevier, vol. 326(C).
    13. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    14. Sun, Zhao & Russell, Christopher K. & Fan, Maohong, 2021. "Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char," Renewable Energy, Elsevier, vol. 163(C), pages 445-452.
    15. Li, Jiazhou & Chen, Xiaodong & Zhang, Yuming & Xu, Jinghui & Liu, Yindong & Wang, Luhai & Zhang, Wei & Guo, Jinjun & Zhang, Wenbin & Sun, Qiang & Qi, Yunfei, 2022. "Characterization of FCC slurry oil products thermally converted over modified coke powder," Energy, Elsevier, vol. 261(PA).
    16. Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
    17. Ram, Mahendra & Mondal, Monoj Kumar, 2019. "Investigation on fuel gas production from pulp and paper waste water impregnated coconut husk in fluidized bed gasifier via humidified air and CO2 gasification," Energy, Elsevier, vol. 178(C), pages 522-529.
    18. Jinlong Xie & Kang Zhu & Zhen Zhang & Xinfei Chen & Yan Lin & Jianjun Hu & Ya Xiong & Yongqi Zhang & Zhen Huang & Hongyu Huang, 2023. "Chemical Looping Gasification of Wood Waste Using NiO-Modified Hematite as an Oxygen Carrier," Energies, MDPI, vol. 16(4), pages 1-16, February.
    19. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    20. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    Herbal residue; Fixed bed reactor; Catalytic pyrolysis; Ni–Fe/Ca catalyst; H2 production;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.