IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222010441.html
   My bibliography  Save this article

On the evaluation of Representative Elementary Area for porosity in shale rocks by Field Emission Scanning Electron Microscopy

Author

Listed:
  • Medina, Federico Javier
  • Jausoro, Ignacio
  • Floridia Addato, María Alejandra
  • Rodriguez, María Jimena
  • Tomassini, Federico González
  • Caneiro, Alberto

Abstract

Field Emission Scanning Electron Microscopy (FESEM) is commonly used to characterize shales at the nanoscale, but nevertheless, its use in quantitative analysis is still limited.

Suggested Citation

  • Medina, Federico Javier & Jausoro, Ignacio & Floridia Addato, María Alejandra & Rodriguez, María Jimena & Tomassini, Federico González & Caneiro, Alberto, 2022. "On the evaluation of Representative Elementary Area for porosity in shale rocks by Field Emission Scanning Electron Microscopy," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010441
    DOI: 10.1016/j.energy.2022.124141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Lin & Dowey, Patrick J. & Rutter, Ernest & Taylor, Kevin G. & Lee, Peter D., 2019. "A novel upscaling procedure for characterising heterogeneous shale porosity from nanometer-to millimetre-scale in 3D," Energy, Elsevier, vol. 181(C), pages 1285-1297.
    2. Saif, Tarik & Lin, Qingyang & Butcher, Alan R. & Bijeljic, Branko & Blunt, Martin J., 2017. "Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM," Applied Energy, Elsevier, vol. 202(C), pages 628-647.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Wen, Zhigang & Liu, Yan & Morta, Hem Bahadur & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Experimental investigation and intelligent modeling of pore structure changes in type III kerogen-rich shale artificially matured by hydrous and anhydrous pyrolysis," Energy, Elsevier, vol. 282(C).
    2. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
    3. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    2. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    3. Pan, Bin & Yin, Xia & Yang, Zhengru & Ghanizadeh, Amin & Debuhr, Chris & Clarkson, Christopher R. & Gou, Feifei & Zhu, Weiyao & Ju, Yang & Iglauer, Stefan, 2024. "Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy," Applied Energy, Elsevier, vol. 363(C).
    4. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    5. Bowen Ling & Hasan J. Khan & Jennifer L. Druhan & Ilenia Battiato, 2020. "Multi-Scale Microfluidics for Transport in Shale Fabric," Energies, MDPI, vol. 14(1), pages 1-23, December.
    6. Zhang, Xiaoying & Ma, Funing & Yin, Shangxian & Wallace, Corey D & Soltanian, Mohamad Reza & Dai, Zhenxue & Ritzi, Robert W. & Ma, Ziqi & Zhan, Chuanjun & Lü, Xiaoshu, 2021. "Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review," Applied Energy, Elsevier, vol. 303(C).
    7. Zhiyu Li & Zhengdong Lei & Weijun Shen & Dmitriy A. Martyushev & Xinhai Hu, 2023. "A Comprehensive Review of the Oil Flow Mechanism and Numerical Simulations in Shale Oil Reservoirs," Energies, MDPI, vol. 16(8), pages 1-23, April.
    8. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    9. Huang, Xudong & Kang, Zhiqin & Zhao, Jing & Wang, Guoying & Zhang, Hongge & Yang, Dong, 2023. "Experimental investigation on micro-fracture evolution and fracture permeability of oil shale heated by water vapor," Energy, Elsevier, vol. 277(C).
    10. Wu, Jianguo & Luo, Chao & Zhong, Kesu & Li, Yi & Li, Guoliang & Du, Zhongming & Yang, Jijin, 2023. "Innovative characterization of organic nanopores in marine shale by the integration of HIM and SEM," Energy, Elsevier, vol. 282(C).
    11. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    12. Zhan, Honglei & Chen, Mengxi & Zhao, Kun & Li, Yizhang & Miao, Xinyang & Ye, Haimu & Ma, Yue & Hao, Shijie & Li, Hongfang & Yue, Wenzheng, 2018. "The mechanism of the terahertz spectroscopy for oil shale detection," Energy, Elsevier, vol. 161(C), pages 46-51.
    13. Du, Shuheng, 2020. "Profound connotations of parameters on the geometric anisotropy of pores in which oil store and flow: A new detailed case study which aimed to dissect, conclude and improve the theoretical meaning and," Energy, Elsevier, vol. 211(C).
    14. Xudong Huang & Dong Yang & Zhiqin Kang, 2020. "Study on the Pore and Fracture Connectivity Characteristics of Oil Shale Pyrolyzed by Superheated Steam," Energies, MDPI, vol. 13(21), pages 1-14, November.
    15. Ma, Lin & Fauchille, Anne-Laure & Chandler, Michael R. & Dowey, Patrick & Taylor, Kevin G. & Mecklenburgh, Julian & Lee, Peter D., 2021. "In-situ synchrotron characterisation of fracture initiation and propagation in shales during indentation," Energy, Elsevier, vol. 215(PB).
    16. Zhou, H.W. & Liu, Z.L. & Zhong, J.C. & Chen, B.C. & Zhao, J.W. & Xue, D.J., 2022. "NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach," Energy, Elsevier, vol. 261(PA).
    17. Zeng, Fang & Dong, Chunmei & Lin, Chengyan & Tian, Shansi & Wu, Yuqi & Lin, Jianli & Liu, Binbin & Zhang, Xianguo, 2022. "Pore structure characteristics of reservoirs of Xihu Sag in East China Sea Shelf Basin based on dual resolution X-ray computed tomography and their influence on permeability," Energy, Elsevier, vol. 239(PD).
    18. Cui, Ziang & Sun, Mengdi & Mohammadian, Erfan & Hu, Qinhong & Liu, Bo & Ostadhassan, Mehdi & Yang, Wuxing & Ke, Yubin & Mu, Jingfu & Ren, Zijie & Pan, Zhejun, 2024. "Characterizing microstructural evolutions in low-mature lacustrine shale: A comparative experimental study of conventional heat, microwave, and water-saturated microwave stimulations," Energy, Elsevier, vol. 294(C).
    19. Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2023. "Lithofacies influence characteristics on typical shale pore structure," Energy, Elsevier, vol. 282(C).
    20. Haibo Tang & Yangsheng Zhao & Zhiqin Kang & Zhaoxing Lv & Dong Yang & Kun Wang, 2022. "Investigation on the Fracture-Pore Evolution and Percolation Characteristics of Oil Shale under Different Temperatures," Energies, MDPI, vol. 15(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.