IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5716-d438698.html
   My bibliography  Save this article

Study on the Pore and Fracture Connectivity Characteristics of Oil Shale Pyrolyzed by Superheated Steam

Author

Listed:
  • Xudong Huang

    (Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
    The In-Situ Steam Injection Branch of State Center for Research and Development of Oil Shale Exploitation, Taiyuan University of Technology, Taiyuan 030024, China)

  • Dong Yang

    (Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
    The In-Situ Steam Injection Branch of State Center for Research and Development of Oil Shale Exploitation, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhiqin Kang

    (Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
    The In-Situ Steam Injection Branch of State Center for Research and Development of Oil Shale Exploitation, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The connectivity of the internal pores and fractures in oil shale is the critical factor in determining the success of the insitu pyrolysis of the oil shale with superheated steam. In this paper, using a self-developed superheated steam pyrolysis experimental system, oil shale samples were subjected to pyrolysis experiments at different steam temperatures. Then, the oil shale samples were scanned with high-precision micro-CT equipment to obtain the three-dimensional digital core of oil shale (DCOS). Based on the three-dimensional site percolation theory and renormalization group algorithm, the pore and fracture connectivity characteristics of the DCOSs were studied. The results show that when the steam temperature reached the pyrolysis temperature for oil shale, a series of pores was formed during the pyrolysis process. These pores gradually connected the adjacent fracture and subsequently formed a massive pore-fracture cluster. However, from room temperature to 555 °C, there were always parts with porosity less than 5% in the DCOSs perpendicular to the direction of the sedimentary bedding, forming the bottleneck of the seepage passage. This occurrence is the main reason that the permeability of the oil shale perpendicular to the direction of the sedimentary bedding is far lower than that parallel to the direction of the sedimentary bedding.

Suggested Citation

  • Xudong Huang & Dong Yang & Zhiqin Kang, 2020. "Study on the Pore and Fracture Connectivity Characteristics of Oil Shale Pyrolyzed by Superheated Steam," Energies, MDPI, vol. 13(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5716-:d:438698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Wang & Dong Yang & Xiang Li & Jing Zhao & Guoying Wang & Yangsheng Zhao, 2018. "Macro and Meso Characteristics of In-Situ Oil Shale Pyrolysis Using Superheated Steam," Energies, MDPI, vol. 11(9), pages 1-15, August.
    2. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    3. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    4. Saif, Tarik & Lin, Qingyang & Butcher, Alan R. & Bijeljic, Branko & Blunt, Martin J., 2017. "Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM," Applied Energy, Elsevier, vol. 202(C), pages 628-647.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youhong Sun & Shichang Liu & Qiang Li & Xiaoshu Lü, 2022. "Experimental Study on the Factors of the Oil Shale Thermal Breakdown in High-Voltage Power Frequency Electric Heating Technology," Energies, MDPI, vol. 15(19), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    2. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    3. Haibo Tang & Yangsheng Zhao & Zhiqin Kang & Zhaoxing Lv & Dong Yang & Kun Wang, 2022. "Investigation on the Fracture-Pore Evolution and Percolation Characteristics of Oil Shale under Different Temperatures," Energies, MDPI, vol. 15(10), pages 1-14, May.
    4. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    5. Pan, Bin & Yin, Xia & Yang, Zhengru & Ghanizadeh, Amin & Debuhr, Chris & Clarkson, Christopher R. & Gou, Feifei & Zhu, Weiyao & Ju, Yang & Iglauer, Stefan, 2024. "Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy," Applied Energy, Elsevier, vol. 363(C).
    6. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    7. Kang, Shijie & Sun, Youhong & Qiao, Mingyang & Li, Shengli & Deng, Sunhua & Guo, Wei & Li, Jiasheng & He, Wentong, 2022. "The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water," Energy, Elsevier, vol. 238(PA).
    8. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    9. Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
    10. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    11. Siqi Ren & Jing Zhao & Zhiqin Kang & Guoying Wang & Dong Yang, 2023. "Suitability Analysis of the Deformation Behavior of Metal Corrugated Casing in High-Temperature Wellbore," Energies, MDPI, vol. 16(16), pages 1-15, August.
    12. Rongsheng Zhao & Luquan Ren & Sunhua Deng & Youhong Sun & Zhiyong Chang, 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character," Energies, MDPI, vol. 14(23), pages 1-12, November.
    13. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).
    14. Cui, Ziang & Sun, Mengdi & Mohammadian, Erfan & Hu, Qinhong & Liu, Bo & Ostadhassan, Mehdi & Yang, Wuxing & Ke, Yubin & Mu, Jingfu & Ren, Zijie & Pan, Zhejun, 2024. "Characterizing microstructural evolutions in low-mature lacustrine shale: A comparative experimental study of conventional heat, microwave, and water-saturated microwave stimulations," Energy, Elsevier, vol. 294(C).
    15. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1-17, August.
    16. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    17. Dazhong Ren & Zhendong Wang & Fu Yang & Hao Zeng & Chenyuan Lü & Han Wang & Senhao Wang & Shaotao Xu, 2024. "Study on the Applicability of Autothermic Pyrolysis In Situ Conversion Process for Low-Grade Oil Shale: A Case Study of Tongchuan, Ordos Basin, China," Energies, MDPI, vol. 17(13), pages 1-21, June.
    18. Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
    19. Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
    20. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5716-:d:438698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.