IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222008039.html
   My bibliography  Save this article

Life cycle assessment of a novel blast furnace slag utilization system

Author

Listed:
  • Duan, Wenjun
  • Li, Peishi
  • Wu, Qinting
  • Song, Huicong

Abstract

A novel system was proposed to realize the high value-added utilization of blast furnace slag. In this study, a comprehensive analysis concerning energy consumption, environmental impact and economic cost of the system was conducted based on the perspective of life cycle. Considering the serious situation of global warming, CO2 emission cost was also included. Main contributors in terms of environmental impact, energy consumption and economic cost were traced through contribution analysis. Global warming potential was the most prominent environmental issue (contributing 65.71% to total impact) and material cost offered the largest economic burden (contributing 90.57% to total cost). However, the adsorption capacity of two products offset total CO2 emission to −6103.62 kg·tslag−1 and decreased total economic cost to 352.26 $·tslag−1, turning the major limitation into a great opportunity. Most energy was consumed in upstream production of chemicals and only 3.18% of the total energy consumption came from the downstream utilization process. According to the sustainability evaluation among three processes, pretreatment performed worst and the hydrotalcite-like compounds synthesis process best. Additionally, sensitivity analysis indicated that overall performance of the system could be efficiently improved by reducing hydrochloric acid consumption. Analysis results in this study exhibited the huge potential of the system in emission reduction and could provide guidance for further improvement.

Suggested Citation

  • Duan, Wenjun & Li, Peishi & Wu, Qinting & Song, Huicong, 2022. "Life cycle assessment of a novel blast furnace slag utilization system," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008039
    DOI: 10.1016/j.energy.2022.123900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Cheng & Ju, Yonglin & Fu, Yunzhun, 2021. "Comparative life cycle cost analysis of low pressure fuel gas supply systems for LNG fueled ships," Energy, Elsevier, vol. 218(C).
    2. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
    3. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    4. Li, Junjie & Cheng, Wanjing, 2020. "Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol," Applied Energy, Elsevier, vol. 277(C).
    5. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    6. Perčić, Maja & Ančić, Ivica & Vladimir, Nikola, 2020. "Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    2. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    3. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    4. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    5. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    6. Haicheng Jia & Ling Liang & Jiqing Xie & Jianyun Zhang, 2022. "Environmental Effects of Technological Improvements in Polysilicon Photovoltaic Systems in China—A Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    7. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    8. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    9. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    10. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Maradin Dario & Cerović Ljerka & Mjeda Trina, 2017. "Economic Effects of Renewable Energy Technologies," Naše gospodarstvo/Our economy, Sciendo, vol. 63(2), pages 49-59, June.
    13. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    14. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    15. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    16. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    18. Fu, Z.H. & Xie, Y.L. & Li, W. & Lu, W.T. & Guo, H.C., 2017. "An inexact multi-objective programming model for an economy-energy-environment system under uncertainty: A case study of Urumqi, China," Energy, Elsevier, vol. 126(C), pages 165-178.
    19. Tripathy, M. & Joshi, H. & Panda, S.K., 2017. "Energy payback time and life-cycle cost analysis of building integrated photovoltaic thermal system influenced by adverse effect of shadow," Applied Energy, Elsevier, vol. 208(C), pages 376-389.
    20. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.