IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222004030.html
   My bibliography  Save this article

Simulation, analysis and control of a self-propelling heat removal system using supercritical CO2 under varying boundary conditions

Author

Listed:
  • Hofer, Markus
  • Ren, Haikun
  • Hecker, Frieder
  • Buck, Michael
  • Brillert, Dieter
  • Starflinger, Jörg

Abstract

The supercritical carbon dioxide (sCO21) heat removal system, which is based on a closed Brayton cycle with sCO2 as a working fluid, is an innovative heat removal system for existing and future nuclear power plants. This paper provides the design, layout and control of the system based on assumptions developed in the project sCO2-4-NPP. A self-propelling operational readiness state enables a fast start-up and consumes only 12% of the design thermal power input. The system is analysed over a wide range of ambient and steam-side conditions in ATHLET, using performance maps for the turbomachinery, which were designed recently. The performance analysis suggests that it is a good option to operate the system at the design compressor inlet temperature of 55 °C at any boundary condition. With decreasing thermal power input, the rotational speed of the turbomachinery must be decreased to keep the system self-propelling. Moreover, the turbomachinery design with a higher surge margin is preferred. By controlling the compressor inlet temperature via the air mass flow rate and turbine inlet temperature via the turbomachinery speed, the heat removal system is successfully operated in interaction with a pressurized water reactor.

Suggested Citation

  • Hofer, Markus & Ren, Haikun & Hecker, Frieder & Buck, Michael & Brillert, Dieter & Starflinger, Jörg, 2022. "Simulation, analysis and control of a self-propelling heat removal system using supercritical CO2 under varying boundary conditions," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004030
    DOI: 10.1016/j.energy.2022.123500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hofer, Markus & Hecker, Frieder & Buck, Michael & Starflinger, Jörg, 2024. "Transient simulation and analysis of a supercritical CO2 heat removal system under different abnormal operation conditions," Energy, Elsevier, vol. 294(C).
    2. Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lianjie & Deng, Tianrui & Klemeš, Jiří Jaromír & Zeng, Min & Ma, Ting & Wang, Qiuwang, 2021. "Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions," Energy, Elsevier, vol. 237(C).
    2. Mustafa Erguvan & David W. MacPhee, 2021. "Can a Wastewater Treatment Plant Power Itself? Results from a Novel Biokinetic-Thermodynamic Analysis," J, MDPI, vol. 4(4), pages 1-24, October.
    3. Xu, Chi & Kong, Fanli & Yu, Dali & Yu, Jie & Khan, Muhammad Salman, 2021. "Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system," Energy, Elsevier, vol. 222(C).
    4. Theologou, Konstantinos & Mertz, Rainer & Laurien, Eckart & Starflinger, Jörg, 2022. "Experimental investigations on heat transfer of CO2 under supercritical pressure in heated horizontal pipes," Energy, Elsevier, vol. 254(PA).
    5. Hofer, Markus & Hecker, Frieder & Buck, Michael & Starflinger, Jörg, 2024. "Transient simulation and analysis of a supercritical CO2 heat removal system under different abnormal operation conditions," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.