IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000524.html
   My bibliography  Save this article

Study on the characteristics of hydrate formation in HSB solution: Focused on the micro-morphologies

Author

Listed:
  • Liu, Zhiming
  • Li, Yuxing
  • Wang, Wuchang
  • Song, Guangchun
  • Yu, Xinran
  • Li, Zhigang
  • Wang, Honghong
  • Xiao, Wensheng
  • Wang, Hongyan

Abstract

Hydrate formation could be promoted by the surfactant solutions significantly, so the study of its characteristics is helpful to the industrial application of hydrate-based technologies. In this study, using Alkyl C16-18 hydroxypropyl sulfobetaine (HSB1618) solution, the hydrate formation in the liquid film, on the gas bubble surface were investigated, and the micro process of the liquid phase migration between the hydrate particles was intuitively exhibited. The mechanisms of the hydrate particle burst and the presence of concentric lines were proposed. The results showed that on the reactor wall, hydrate spots were formed in the liquid film, the liquid phase could migrate upward through the pores inside the hydrate spots under the capillary force to sustain the further hydrate growth. When the hydrate particles were initially formed, they were hexagonal pyramid-shaped and with their vertex towards the liquid phase, with the hydrate particles grew bigger, they burst into fragments, then the hydrate film was observed to be formed by the tight aggregation, thickening, and growth of the fragments in the liquid film. The heterogeneous nucleation could reduce the energy barrier for the hydrate formation, which facilitated the hydrate formation on the reactor wall.

Suggested Citation

  • Liu, Zhiming & Li, Yuxing & Wang, Wuchang & Song, Guangchun & Yu, Xinran & Li, Zhigang & Wang, Honghong & Xiao, Wensheng & Wang, Hongyan, 2022. "Study on the characteristics of hydrate formation in HSB solution: Focused on the micro-morphologies," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000524
    DOI: 10.1016/j.energy.2022.123149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000524
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yi-Song & Zhang, Qing-Zong & Li, Xiao-Sen & Chen, Chang & Zhou, Shi-Dong, 2020. "Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane," Applied Energy, Elsevier, vol. 265(C).
    2. Lu, Yi-Yu & Ge, Bin-Bin & Zhong, Dong-Liang, 2020. "Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage," Energy, Elsevier, vol. 199(C).
    3. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Shuang & Li, Xingxun & Wang, Cunning & Guo, Xuqiang & Jiang, Xu & Li, Qingping & Chen, Guangjin & Sun, Changyu, 2024. "Effect of asphaltenes on growth behavior of methane hydrate film at the oil-water interface," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    2. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    3. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    4. Zhang, Ye & Bhattacharjee, Gaurav & Dharshini Vijayakumar, Mohana & Linga, Praveen, 2022. "Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter," Applied Energy, Elsevier, vol. 311(C).
    5. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    6. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    8. Shi, Lingli & Li, Junhui & Chen, Yong & Lu, Jingsheng & He, Yong & Liang, Deqing, 2024. "Molecular dynamics simulation study of the cosine oscillation electric field's effect on methane hydrate growth," Energy, Elsevier, vol. 290(C).
    9. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Kumar, Sreekala & Tee, Jackson & Seo, Yutaek & Linga, Praveen, 2022. "An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: Application for cold storage and transport," Applied Energy, Elsevier, vol. 308(C).
    10. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    11. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    12. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    13. Xiao, Peng & Dong, Bao-Can & Li, Jia & Zhang, Hong-Liang & Chen, Guang-Jin & Sun, Chang-Yu & Huang, Xing, 2022. "An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production," Energy, Elsevier, vol. 259(C).
    14. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Xu, Huazheng & Jiang, Lanlan & Wang, Lei & Song, Yongchen, 2023. "Multiscale analysis of the effect of the structural transformation of TBAB semi-clathrate hydrate on CO2 capture efficiency," Energy, Elsevier, vol. 280(C).
    15. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    16. Xuebing Zhou & Ye Zhang & Xiaoya Zang & Deqing Liang, 2020. "Formation Kinetics of the Mixed Cyclopentane—Carbon Dioxide Hydrates in Aqueous Sodium Chloride Solutions," Energies, MDPI, vol. 13(17), pages 1-10, August.
    17. Beckwée, Emile Jules & Houlleberghs, Maarten & Ciocarlan, Radu-George & Chandran, C. Vinod & Radhakrishnan, Sambhu & Hanssens, Lucas & Cool, Pegie & Martens, Johan & Breynaert, Eric & Baron, Gino V. &, 2024. "Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading," Applied Energy, Elsevier, vol. 353(PA).
    18. Shi, Lingli & Li, Junhui & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Memory effect test and analysis in methane hydrates reformation process," Energy, Elsevier, vol. 272(C).
    19. Chen, Chang & Zhang, Yu & Li, Xiaosen & He, Jiayuan & Gao, Fei & Chen, Zhaoyang, 2024. "Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of illite clay," Applied Energy, Elsevier, vol. 359(C).
    20. Lin, Yanwen & Hao, Yongchao & Shi, Qiao & Xu, Yihua & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2024. "Enhanced formation of methane hydrates via graphene oxide: Machine learning insights from molecular dynamics simulations," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.