IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221029492.html
   My bibliography  Save this article

Experimental and numerical studies on production scheme to improve energy efficiency of bitumen production through insitu oil-in-water (O/W) emulsion

Author

Listed:
  • Alade, Olalekan S.
  • Mahmoud, Mohamed
  • Al Shehri, Dhafer
  • Mokheimer, Esmail M.A.
  • Sasaki, Kyuro
  • Ohashi, Ryo
  • Kamal, Muhammad Shahzad
  • Muhammad, Isah
  • Al-Nakhli, Ayman

Abstract

Emulsification involving dispersion of bitumen droplets in a continuous aqueous phase (as oil-in-water (O/W) emulsion), is an efficient method of reducing the viscosity. The objective of this research is to harness the potential of insitu emulsification for production of bitumen to improve energy efficiency. Thus, O/W emulsion was prepared using poly vinyl alcohol (PVA) surfactant (with NaOH and ethanol additivities) at different ratios of bitumen: PVA solution viz. 70:30 (RX1), 55:45 (RX2), 40:60 (RX3). The data was incorporated in computational fluid dynamics (CFD) analysis to obtain emulsification reaction parameters at different temperatures (30–150 °C). Subsequently, numerical simulation considering insitu formation of O/W emulsion was performed at different injection temperatures (50, 100, and 150 °C). The results were compared with those of conventional steam injection at 215 °C. Significant viscosity reduction of bitumen was obtained from emulsification experiments. From numerical simulation, the proposed method resulted in higher oil: steam ratio (OSR) compared with steam injection method. Ultimately, with reference to steam injection (thermal efficiency, ΔEeff = 0.02 m3/GJ; net bitumen production = 692 m3), the most promising operation is the production from RX3, at 150 °C, with thermal efficiency, ΔEeff = 0.04 m3/GJ, and 649 m3 net bitumen production.

Suggested Citation

  • Alade, Olalekan S. & Mahmoud, Mohamed & Al Shehri, Dhafer & Mokheimer, Esmail M.A. & Sasaki, Kyuro & Ohashi, Ryo & Kamal, Muhammad Shahzad & Muhammad, Isah & Al-Nakhli, Ayman, 2022. "Experimental and numerical studies on production scheme to improve energy efficiency of bitumen production through insitu oil-in-water (O/W) emulsion," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029492
    DOI: 10.1016/j.energy.2021.122700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapadia, Punitkumar R. & Wang, Jingyi (Jacky) & Kallos, Michael S. & Gates, Ian D., 2013. "Practical process design for in situ gasification of bitumen," Applied Energy, Elsevier, vol. 107(C), pages 281-296.
    2. Cheng, Linsong & Liu, Hao & Huang, Shijun & Wu, Keliu & Chen, Xiao & Wang, Daigang & Xiong, Hao, 2018. "Environmental and economic benefits of Solvent-Assisted Steam-Gravity Drainage for bitumen through horizontal well: A comprehensive modeling analysis," Energy, Elsevier, vol. 164(C), pages 418-431.
    3. Luo, Erhui & Fan, Zifei & Hu, Yongle & Zhao, Lun & Bo, Bing & Yu, Wei & Liang, Hongwei & Liu, Minghui & Liu, Yunyang & He, Congge & Wang, Jianjun, 2020. "An efficient optimization framework of cyclic steam stimulation with experimental design in extra heavy oil reservoirs," Energy, Elsevier, vol. 192(C).
    4. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    5. Liu, Yongge & Liu, Xiaoyu & Hou, Jian & Li, Huazhou Andy & Liu, Yueliang & Chen, Zhangxin, 2019. "Technical and economic feasibility of a novel heavy oil recovery method: Geothermal energy assisted heavy oil recovery," Energy, Elsevier, vol. 181(C), pages 853-867.
    6. Sun, Fengrui & Li, Chunlan & Cheng, Linsong & Huang, Shijun & Zou, Ming & Sun, Qun & Wu, Xiaojun, 2017. "Production performance analysis of heavy oil recovery by cyclic superheated steam stimulation," Energy, Elsevier, vol. 121(C), pages 356-371.
    7. Kraemer, Daniel & Bajpayee, Anurag & Muto, Andy & Berube, Vincent & Chiesa, Matteo, 2009. "Solar assisted method for recovery of bitumen from oil sand," Applied Energy, Elsevier, vol. 86(9), pages 1437-1441, September.
    8. Wang, Jingyi & Gates, Ian D., 2021. "Time scales for steam injection and bitumen production in steam-assisted gravity drainage," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdi-Khanghah, Mahdi & Jafari, Arezou & Ahmadi, Goodarz & Hemmati-Sarapardeh, Abdolhossein, 2023. "Synthesis of mono, bi, and trimetallic Sn–Ni–Cu based ionic micro-emulsion catalysts and optimization of catalytic performance in heavy oil upgrading," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Linsong & Liu, Hao & Huang, Shijun & Wu, Keliu & Chen, Xiao & Wang, Daigang & Xiong, Hao, 2018. "Environmental and economic benefits of Solvent-Assisted Steam-Gravity Drainage for bitumen through horizontal well: A comprehensive modeling analysis," Energy, Elsevier, vol. 164(C), pages 418-431.
    2. Zhang, Qitao & Liu, Wenchao & Dahi Taleghani, Arash, 2022. "Numerical study on non-Newtonian Bingham fluid flow in development of heavy oil reservoirs using radiofrequency heating method," Energy, Elsevier, vol. 239(PE).
    3. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    4. Lyu, Chaohui & Zhong, Liguo & Wang, Qing & Zhang, Wei & Han, Xiaodong & Chen, Mingqiang & Zhu, Yu & Yang, Jiawang, 2023. "Core scale analysis of low viscosity oil injection in enhancing oil recovery of heavy oil reservoirs," Energy, Elsevier, vol. 275(C).
    5. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands," Applied Energy, Elsevier, vol. 143(C), pages 189-199.
    6. Fengrui Sun & Yuedong Yao & Xiangfang Li & Guozhen Li & Liang Huang & Hao Liu & Zhili Chen & Qing Liu & Wenyuan Liu & Meng Cao & Song Han, 2018. "Exploitation of heavy oil by supercritical CO2: Effect analysis of supercritical CO2 on H2O at superheated state in integral joint tubing and annuli," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 557-569, June.
    7. Sun, Fengrui & Yao, Yuedong & Li, Xiangfang, 2018. "The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique," Energy, Elsevier, vol. 143(C), pages 995-1005.
    8. Lazzaroni, Edoardo Filippo & Elsholkami, Mohamed & Arbiv, Itai & Martelli, Emanuele & Elkamel, Ali & Fowler, Michael, 2016. "Energy infrastructure modeling for the oil sands industry: Current situation," Applied Energy, Elsevier, vol. 181(C), pages 435-445.
    9. Zhang, Qichen & Liu, Huiqing & Kang, Xiaodong & Liu, Yisheng & Dong, Xiaohu & Wang, Yanwei & Liu, Siyi & Li, Guangbo, 2021. "An investigation of production performance by cyclic steam stimulation using horizontal well in heavy oil reservoirs," Energy, Elsevier, vol. 218(C).
    10. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    11. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    12. Jinzhao Song & Qing Feng & Xiaoping Wang & Hanliang Fu & Wei Jiang & Baiyu Chen, 2018. "Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    13. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    14. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    15. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    16. Duan, Zhonghui & Zhang, Yongmin & Yang, Fu & Liu, Meijuan & Wang, Zhendong & Zhao, Youzhi & Ma, Li, 2024. "Research on controllable shock wave technology for in-situ development of tar-rich coal," Energy, Elsevier, vol. 288(C).
    17. Juan D. Antolinez & Rahman Miri & Alireza Nouri, 2023. "In Situ Combustion: A Comprehensive Review of the Current State of Knowledge," Energies, MDPI, vol. 16(17), pages 1-27, August.
    18. Zhou, Xiang & Li, Xiuluan & Shen, Dehuang & Shi, Lanxiang & Zhang, Zhien & Sun, Xinge & Jiang, Qi, 2022. "CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study," Energy, Elsevier, vol. 239(PB).
    19. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    20. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.