IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221027742.html
   My bibliography  Save this article

Experimental and numerical investigation on a photovoltaic heat pump with two condensers: A micro-channel heat pipe/thermoelectric generator condenser and a submerged coil condenser

Author

Listed:
  • Song, Zhiying
  • Ji, Jie
  • Zhang, Yuzhe
  • Cai, Jingyong
  • Li, Zhaomeng

Abstract

Thermoelectric generators are proposed to be applied to the heat pumps to further improve the electrical output of the system. Some mathematical analyses have been carried out, but the related experimental exploration is lacked. In this paper, a photovoltaic heat pump with two condensers: a micro-channel heat pipe/thermoelectric generator (MCHP/TEG) condenser and a submerged coil condenser, was built and tested under different weather conditions. Results show that the water temperature rises with running time, leading to the decrease in heat capacity and coefficient of performance (COPth: only consider the heat; COPPVT: consider both electricity and heat). On 29th May, the average photovoltaic output, condensing heat, COPth, and COPPVT are 358 W, 3373 W, 3.96, and 5.08, which are improved to 485 W, 3705 W, 4.32, and 5.80 by the better irradiation condition on 30th May, but the average electrical efficiency is decreased from 16.63% to 15.65%. The TEG output is also higher under better irradiance. However, due to the poor performance of the commercial TEG, the TEG output in the experiment is low. With better parameters or a larger photovoltaic evaporating area, the TEG output and system performance could be enhanced. This article is also a supplement and improvement to several previously published articles in terms of experiments and verification.

Suggested Citation

  • Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Experimental and numerical investigation on a photovoltaic heat pump with two condensers: A micro-channel heat pipe/thermoelectric generator condenser and a submerged coil condenser," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221027742
    DOI: 10.1016/j.energy.2021.122525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    2. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    3. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    4. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2016. "Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump," Renewable Energy, Elsevier, vol. 93(C), pages 280-290.
    5. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    6. Zhou, Jinzhi & Zhao, Xudong & Ma, Xiaoli & Qiu, Zhongzhu & Ji, Jie & Du, Zhenyu & Yu, Min, 2016. "Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules," Applied Energy, Elsevier, vol. 178(C), pages 484-495.
    7. Zheng, X.F. & Liu, C.X. & Yan, Y.Y. & Wang, Q., 2014. "A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 486-503.
    8. Keliang, Liu & Jie, Ji & Tin-tai, Chow & Gang, Pei & Hanfeng, He & Aiguo, Jiang & Jichun, Yang, 2009. "Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor – A case study in Tibet," Renewable Energy, Elsevier, vol. 34(12), pages 2680-2687.
    9. Hangtian Zhu & Ran He & Jun Mao & Qing Zhu & Chunhua Li & Jifeng Sun & Wuyang Ren & Yumei Wang & Zihang Liu & Zhongjia Tang & Andrei Sotnikov & Zhiming Wang & David Broido & David J. Singh & Gang Chen, 2018. "Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    10. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    11. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    12. Yao, Jian & Zheng, Sihang & Chen, Daochuan & Dai, Yanjun & Huang, Mingjun, 2021. "Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region," Energy, Elsevier, vol. 219(C).
    13. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    14. Ji, Jie & Liu, Keliang & Chow, Tin-tai & Pei, Gang & He, Wei & He, Hanfeng, 2008. "Performance analysis of a photovoltaic heat pump," Applied Energy, Elsevier, vol. 85(8), pages 680-693, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).
    2. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying & Yao, Tingting, 2023. "Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study," Energy, Elsevier, vol. 264(C).
    3. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang & Bai, Ze, 2023. "Dynamic modelling and performance prediction of a novel direct-expansion ice thermal storage system based multichannel flat tube evaporator plus micro heat pipe arrays storage module," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
    2. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    3. Song, Zhiying & Zhang, Yuzhe & Ji, Jie & He, Wei & Hu, Zhongting & Xuan, Qingdong, 2024. "Yearly photoelectric/thermal and economic performance comparison between CPV and FPV dual-source heat pump systems in different regions," Energy, Elsevier, vol. 289(C).
    4. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Research on the multifunction concentrated solar-air heat pump system," Renewable Energy, Elsevier, vol. 198(C), pages 679-694.
    5. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    6. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    7. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    8. Choi, Hwi-Ung & Choi, Kwang-Hwan, 2023. "Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater," Energy, Elsevier, vol. 285(C).
    9. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong, 2023. "Performance improvement and comparison analysis of the hybrid concentrated dual-source heat pump system regarding proper throttling process," Renewable Energy, Elsevier, vol. 206(C), pages 24-38.
    10. Song, Zhiying & Ji, Jie & Li, Zhaomeng, 2022. "Performance of a heat pump system in combination with thermoelectric generators," Energy, Elsevier, vol. 239(PA).
    11. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    12. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    13. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    14. Lu, Shixiang & Zhang, Jili & Liang, Ruobing & Zhou, Chao, 2020. "Refrigeration characteristics of a hybrid heat dissipation photovoltaic-thermal heat pump under various ambient conditions on summer night," Renewable Energy, Elsevier, vol. 146(C), pages 2524-2534.
    15. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Liang, Ruobing & Zhou, Chao & Zhang, Jili & Chen, Jianquan & Riaz, Ahmad, 2020. "Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation," Renewable Energy, Elsevier, vol. 146(C), pages 2450-2461.
    17. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    18. Han, Youhua & Ma, Liangdong & Zhang, Jili & Mi, Peiyuan & Guo, Xiaochao, 2024. "Superheat matching control method for a roll-bond photovoltaic-thermal heat pump system," Energy, Elsevier, vol. 290(C).
    19. Liu, Wenjie & Yao, Jian & Jia, Teng & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2023. "The performance optimization of DX-PVT heat pump system for residential heating," Renewable Energy, Elsevier, vol. 206(C), pages 1106-1119.
    20. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221027742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.