IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221030760.html
   My bibliography  Save this article

Investigation of the CN and C2 emission characteristics and microstructural evolution of coal to char using laser-induced breakdown spectroscopy and Raman spectroscopy

Author

Listed:
  • Zhu, Wenkun
  • Li, Xiaohui
  • Sun, Rui
  • Cao, Zhen
  • Yuan, Mengfan
  • Sun, Liutao
  • Yu, Xin
  • Wu, Jiangquan

Abstract

Laser-induced breakdown spectroscopy (LIBS) was employed to study the spectral characteristics of the C2 and CN emissions of three types of coal and their pyrolysis char samples. By analysing the atomic and molecular emissions, the electron temperature, electron density and rotational temperature were calculated to evaluate the characteristics of the laser-induced plasma. The correlation between the molecular emissions and coal combustion characteristics was also investigated, which was explained from the aspect of microstructural evolution obtained by Raman spectroscopy. The molecular emissions were gradually inhibited with increasing pyrolysis temperatures, however the molecules tended to distribute at a higher equilibrium temperature. The rotational temperatures increase by 1000–3300 K relative to the raw coal for chars prepared at pyrolysis temperatures of 293–1173 K. The reduction of C2 and CN emissions, which are thought to be mainly caused by small aromatic rings and amorphous carbon structures, is consistent with the Raman spectroscopy results in that the microstructures evolve towards a more stable large aromatic-ring skeleton after pyrolysis. When the carbon conversion ratio is Xc = 50% for three kinds of coal, the R2 values of the exponential fitting between C2 emission and carbon conversion rate are all higher than 0.99.

Suggested Citation

  • Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Cao, Zhen & Yuan, Mengfan & Sun, Liutao & Yu, Xin & Wu, Jiangquan, 2022. "Investigation of the CN and C2 emission characteristics and microstructural evolution of coal to char using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030760
    DOI: 10.1016/j.energy.2021.122827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jingyu & Deng, Jun & Chen, Long & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation," Energy, Elsevier, vol. 181(C), pages 136-147.
    2. Xu, Jun & Liu, Jiawei & Ling, Peng & Zhang, Xin & Xu, Kai & He, Limo & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2020. "Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property," Energy, Elsevier, vol. 202(C).
    3. Xu, Jun & Tang, Hao & Su, Sheng & Liu, Jiawei & Xu, Kai & Qian, Kun & Wang, Yi & Zhou, Yingbiao & Hu, Song & Zhang, Anchao & Xiang, Jun, 2018. "A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals," Applied Energy, Elsevier, vol. 212(C), pages 46-56.
    4. Sonibare, Oluwadayo O. & Haeger, Tobias & Foley, Stephen F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy," Energy, Elsevier, vol. 35(12), pages 5347-5353.
    5. Wang, Zhuozhi & Sun, Rui & Zhao, Yaying & Li, Yupeng & Ren, Xiaohan, 2019. "Effect of steam concentration on demineralized coal char surface behaviors and structural characteristics during the oxy-steam combustion process," Energy, Elsevier, vol. 174(C), pages 339-349.
    6. Kou, Mingyin & Zuo, Haibin & Ning, Xiaojun & Wang, Guangwei & Hong, Zhibin & Xu, Haifa & Wu, Shengli, 2019. "Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Mengfan & Zhu, Wenkun & Wang, Zhuozhi & Guo, Yuting & Li, Gaoyang & Chen, Yongxin & Peng, Jiangbo & Sun, Rui, 2024. "Diagnostic investigation of devolatilization, ignition, and flame fluctuation during laminar oxy-coal combustion," Energy, Elsevier, vol. 289(C).
    2. Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Yan, Yonghong & Liu, Jing & Wang, Zhuozhi & Yu, Xing, 2023. "Microstructural evolution of coal to char after pyrolysis using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    2. Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
    3. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    4. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    5. Zhang, Wenda & Sun, Shaozeng & Zhao, Yijun & Zhao, Zujie & Wang, Pengxiang & Feng, Dongdong & Li, Pengfei, 2020. "Effects of total pressure and CO2 partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate," Energy, Elsevier, vol. 208(C).
    6. Huang, Jiliang & Tan, Bo & Gao, Liyang & Fan, Long & Shao, Zhuangzhuang & Wang, Haiyan & Qi, Qingjie, 2024. "Study on the evolution characteristics of molecular surface active sites of low-rank coal in low-temperature oxidation stage," Energy, Elsevier, vol. 294(C).
    7. Miao, Guodong & Li, Zenghua & Yang, Jingjing & Yang, Yongliang & Liu, Hao, 2023. "Microstructure evolution and higher-molecular-weight gas emission during the low temperature oxidation of coal," Energy, Elsevier, vol. 282(C).
    8. Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Yan, Yonghong & Liu, Jing & Wang, Zhuozhi & Yu, Xing, 2023. "Microstructural evolution of coal to char after pyrolysis using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 267(C).
    9. Geng, Weile & Huang, Gun & Guo, Shengli & Jiang, Changbao & Dong, Ziwen & Wang, Wensong, 2022. "Influence of long-term CH4 and CO2 treatment on the pore structure and mechanical strength characteristics of Baijiao coal," Energy, Elsevier, vol. 242(C).
    10. Deng, Lihua & Zhang, Wenda & Sun, Shaozeng & Bai, Chenxi & Zhao, Yijun & Feng, Dongdong & Zhang, Linyao & Wu, Jiangquan, 2022. "Effect of pressure on the structure and reactivity of demineralized coal during O2/H2O thermal conversion process," Energy, Elsevier, vol. 244(PA).
    11. Fu, Shenguang & Wang, Liang & Li, Shuohao & Ni, Sijia & Cheng, Yuanping & Zhang, Xiaolei & Liu, Shimin, 2024. "Re-thinking methane storage mechanism in highly metamorphic coalbed reservoirs — A molecular simulation considering organic components," Energy, Elsevier, vol. 293(C).
    12. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    13. Barbara Bielowicz & Rafał Morga, 2021. "Micro-Raman Spectroscopy of Selected Macerals of the Huminite Group: An Example from the Szczerców Lignite Deposit (Central Poland)," Energies, MDPI, vol. 14(2), pages 1-18, January.
    14. Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
    15. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    16. Abunowara, Mustafa & Sufian, Suriati & Bustam, Mohamad Azmi & Eldemerdash, Usama & Suleman, Humbul & Bencini, Roberto & Assiri, Mohammed Ali & Ullah, Sami & Al-Sehemi, Abdullah G., 2020. "Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions," Energy, Elsevier, vol. 210(C).
    17. Li, Jiuqing & Qin, Yong & Shen, Jian & Chen, Yilin, 2024. "Evolution of carbon nanostructures during coal graphitization: Insights from X-ray diffraction and high-resolution transmission electron microscopy," Energy, Elsevier, vol. 290(C).
    18. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).
    19. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    20. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.