IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp138-147.html
   My bibliography  Save this article

Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator

Author

Listed:
  • Lu, Kun
  • Xie, Yonghui
  • Zhang, Di
  • Xie, Gongnan

Abstract

In this paper, an experimental and numerical study on the flow evolution and energy extraction performance of a flapping-airfoil power generator is conducted, and wide ranges of motion parameters are considered. PIV (Particle image velocimetry) method is used for flow visualization around the flapping airfoil, and numerical simulations predicting the flow field and power generation process are also conducted and compared with the test results. It is found that the computed flow field basically agrees well with the experimental results, and the power generation ability of the power generator is validated. At a fixed plunging amplitude H0, both the decreasing reduced frequency k at a fixed pitching amplitude θ0, and the increasing θ0 at a fixed k lead to larger sizes of flow separation. For the flapping motion studied, both plunging contribution and pitching contribution play important roles in the energy extraction, which is very different from the traditionally imposed flapping profile. Besides, at a fixed k, the increasing H0 induces a slight increase in pitching contribution, and the increasing θ0 is beneficial to power generation enhancement. Moreover, the increasing H0 induces a notable increase in output power at relatively low k, while it has little effect on efficiency enhancement.

Suggested Citation

  • Lu, Kun & Xie, Yonghui & Zhang, Di & Xie, Gongnan, 2015. "Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator," Energy, Elsevier, vol. 89(C), pages 138-147.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:138-147
    DOI: 10.1016/j.energy.2015.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Kun & Xie, Yonghui & Zhang, Di, 2014. "Nonsinusoidal motion effects on energy extraction performance of a flapping foil," Renewable Energy, Elsevier, vol. 64(C), pages 283-293.
    2. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    3. Lam, Wei-Haur & Chen, Long & Hashim, Roslan, 2015. "Analytical wake model of tidal current turbine," Energy, Elsevier, vol. 79(C), pages 512-521.
    4. Kinsey, T. & Dumas, G. & Lalande, G. & Ruel, J. & Méhut, A. & Viarouge, P. & Lemay, J. & Jean, Y., 2011. "Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils," Renewable Energy, Elsevier, vol. 36(6), pages 1710-1718.
    5. Xiao, Qing & Liao, Wei & Yang, Shuchi & Peng, Yan, 2012. "How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil?," Renewable Energy, Elsevier, vol. 37(1), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    2. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    3. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    4. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    5. Zhang, Yue & Yang, Fuchun & Li, Yuetai & Qiu, Wenlei, 2021. "Design and numerical investigation of a multi-directional energy-harvesting device for UUVs," Energy, Elsevier, vol. 214(C).
    6. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.
    7. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    8. Wang, Bo & Zhu, Bing & Zhang, Wei, 2019. "New type of motion trajectory for increasing the power extraction efficiency of flapping wing devices," Energy, Elsevier, vol. 189(C).
    9. Arun Raj Shanmugam & Ki Sun Park & Chang Hyun Sohn, 2023. "Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs," Energies, MDPI, vol. 16(8), pages 1-29, April.
    10. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    11. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    12. Wu, Jie & Shen, Meng & Jiang, Lan, 2020. "Role of synthetic jet control in energy harvesting capability of a semi-active flapping airfoil," Energy, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    2. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    3. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    4. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2015. "Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation," Renewable Energy, Elsevier, vol. 81(C), pages 816-824.
    5. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2016. "The power extraction by flapping foil hydrokinetic turbine in swing arm mode," Renewable Energy, Elsevier, vol. 88(C), pages 130-142.
    6. Xie, Y.H. & Jiang, W. & Lu, K. & Zhang, D., 2016. "Numerical investigation into energy extraction of flapping airfoil with Gurney flaps," Energy, Elsevier, vol. 109(C), pages 694-702.
    7. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    8. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.
    9. Li, Weizhong & Wang, Wen-Quan & Yan, Yan, 2020. "The effects of outline of the symmetrical flapping hydrofoil on energy harvesting performance," Renewable Energy, Elsevier, vol. 162(C), pages 624-638.
    10. Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).
    11. Jiang, W. & Zhang, D. & Xie, Y.H., 2016. "Numerical investigation into the effects of arm motion and camber on a self-induced oscillating hydrofoil," Energy, Elsevier, vol. 115(P1), pages 1010-1021.
    12. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2019. "Numerical investigation into power extraction by a fully passive oscillating foil with double generators," Renewable Energy, Elsevier, vol. 133(C), pages 32-43.
    13. Teng, Lubao & Deng, Jian & Pan, Dingyi & Shao, Xueming, 2016. "Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil," Renewable Energy, Elsevier, vol. 85(C), pages 810-818.
    14. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    15. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    16. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2021. "Assessing the performance and the wake recovery rate of flapping-foil turbines with end-plates and detached end-plates," Renewable Energy, Elsevier, vol. 179(C), pages 206-222.
    17. Deng, Jian & Wang, Shuhong & Kandel, Prabal & Teng, Lubao, 2022. "Effects of free surface on a flapping-foil based ocean current energy extractor," Renewable Energy, Elsevier, vol. 181(C), pages 933-944.
    18. Siala, Firas F. & Liburdy, James A., 2020. "Power estimation of flapping foil energy harvesters using vortex impulse theory," Renewable Energy, Elsevier, vol. 154(C), pages 894-902.
    19. Lahooti, Mohsen & Kim, Daegyoum, 2019. "Multi-body interaction effect on the energy harvesting performance of a flapping hydrofoil," Renewable Energy, Elsevier, vol. 130(C), pages 460-473.
    20. Zhang, Yue & Yang, Fuchun & Li, Yuetai & Qiu, Wenlei, 2021. "Design and numerical investigation of a multi-directional energy-harvesting device for UUVs," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:138-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.