IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221024294.html
   My bibliography  Save this article

Parallel-connected battery module modeling based on physical characteristics in multiple domains and heterogeneous characteristic analysis

Author

Listed:
  • Tian, Yong
  • Huang, Zhijia
  • Li, Xiaoyu
  • Tian, Jindong

Abstract

Cell inconsistencies inevitably occur inside a battery module. Particularly, the inconsistencies in current distribution and heat generation in a parallel-connected battery module may lead to battery degradation and potential safety issues. Consequently, it is imperative to evaluate and reduce cell inconsistencies in a battery module. In this paper, an extended single particle model of a battery cell is constructed using the Pade approximation and the first-order Taylor expansion to simplify the conventional electrochemical mechanism model. On this basis, a multidomain electrochemical mechanism simulation model of a parallel-connected battery module is attained. Then, the influence of cell inconsistencies on the battery module voltage, internal current distribution and heat generation under different aging situation is assessed by a parameter sensitivity analysis method. Moreover, based on the contribution of each battery model parameter to the inconsistency of the parallel-connected battery module, a battery cell sorting method is proposed. Finally, this proposed sorting method for secondary applications of batteries is validated based on 15 aged batteries. Results indicate that the average standard deviation of the cell current in the NCM parallel-connected module can be reduced from 0.209 A to 0.060 A. The proposed approach is helpful to the fault analysis of electric vehicle battery modules, module level grading or the secondary applications of retired batteries.

Suggested Citation

  • Tian, Yong & Huang, Zhijia & Li, Xiaoyu & Tian, Jindong, 2022. "Parallel-connected battery module modeling based on physical characteristics in multiple domains and heterogeneous characteristic analysis," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024294
    DOI: 10.1016/j.energy.2021.122181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Changlong & Cui, Naxin & Wang, Chunyu & Zhang, Chenghui, 2021. "Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods," Energy, Elsevier, vol. 221(C).
    2. Hosseinzadeh, Elham & Arias, Sebastian & Krishna, Muthu & Worwood, Daniel & Barai, Anup & Widanalage, Dhammika & Marco, James, 2021. "Quantifying cell-to-cell variations of a parallel battery module for different pack configurations," Applied Energy, Elsevier, vol. 282(PA).
    3. Feng, Fei & Hu, Xiaosong & Hu, Lin & Hu, Fengling & Li, Yang & Zhang, Lei, 2019. "Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 102-113.
    4. Lyu, Chao & Song, Yankong & Zheng, Jun & Luo, Weilin & Hinds, Gareth & Li, Junfu & Wang, Lixin, 2019. "In situ monitoring of lithium-ion battery degradation using an electrochemical model," Applied Energy, Elsevier, vol. 250(C), pages 685-696.
    5. Li, Junfu & Wang, Lixin & Lyu, Chao & Pecht, Michael, 2017. "State of charge estimation based on a simplified electrochemical model for a single LiCoO2 battery and battery pack," Energy, Elsevier, vol. 133(C), pages 572-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shumao & Bao, Wenkang & Sun, Yuedong & Li, Xiangjun & Dai, Feng & Hua, Jianfeng & Zheng, Yuejiu, 2024. "Current sensorless diagnosis of the cell internal resistance consistency in a parallel module using relaxation voltage," Energy, Elsevier, vol. 301(C).
    2. Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
    3. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Random health indicator and shallow neural network based robust capacity estimation for lithium-ion batteries with different fast charging protocols," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junfu & Wang, Lixin & Lyu, Chao & Wang, Dafang & Pecht, Michael, 2019. "Parameter updating method of a simplified first principles-thermal coupling model for lithium-ion batteries," Applied Energy, Elsevier, vol. 256(C).
    2. Gao, Yizhao & Liu, Chenghao & Chen, Shun & Zhang, Xi & Fan, Guodong & Zhu, Chong, 2022. "Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications," Applied Energy, Elsevier, vol. 309(C).
    3. Li, Yuanmao & Liu, Guixiong & Deng, Wei & Li, Zuyu, 2024. "Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods," Applied Energy, Elsevier, vol. 367(C).
    4. Song, Ziyou & Yang, Niankai & Lin, Xinfan & Pinto Delgado, Fanny & Hofmann, Heath & Sun, Jing, 2022. "Progression of cell-to-cell variation within battery modules under different cooling structures," Applied Energy, Elsevier, vol. 312(C).
    5. Gu, Yuxuan & Wang, Jianxiao & Chen, Yuanbo & Xiao, Wei & Deng, Zhongwei & Chen, Qixin, 2023. "A simplified electro-chemical lithium-ion battery model applicable for in situ monitoring and online control," Energy, Elsevier, vol. 264(C).
    6. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    8. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    9. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    11. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    12. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    13. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    14. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    16. Golmohammadzadeh, Rabeeh & Faraji, Fariborz & Jong, Brian & Pozo-Gonzalo, Cristina & Banerjee, Parama Chakraborty, 2022. "Current challenges and future opportunities toward recycling of spent lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Gao, Tianhan & Lu, Wei, 2024. "Reduced-order electrochemical models with shape functions for fast, accurate prediction of lithium-ion batteries under high C-rates," Applied Energy, Elsevier, vol. 353(PA).
    18. Kim, Seongyoon & Choi, Yun Young & Choi, Jung-Il, 2022. "Impedance-based capacity estimation for lithium-ion batteries using generative adversarial network," Applied Energy, Elsevier, vol. 308(C).
    19. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
    20. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.