IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023264.html
   My bibliography  Save this article

Effect of aspect ratio of piezoelectric constituents on the energy harvesting performance of magneto-mechano-electric generators

Author

Listed:
  • Kumar, Ajeet
  • Park, Sung Hoon
  • Patil, Deepak Rajaram
  • Hwang, Geon-Tae
  • Ryu, Jungho

Abstract

In this study, we investigate the effect of the aspect ratio (length (L)/width (W)) of piezoelectric constituents on the energy harvesting performance of cantilever-structured magneto-mechano-electric energy generators comprising magnetoelectric composites. 56 Pb(Mg1/3,Nb1/3)O3–10PbZrO3–34PbTiO3 (PMN-PZT) single crystal fiber bundled plates with different aspect ratios (L/W = 0.59, 0.78, 1, 1.25, and 1.6), a magnetostrictive Ni plate and NdFeB permanent magnet proof mass were used to fabricate the magneto-mechano-electric generator. The results of a finite element analysis showed that the output electric potential is strongly dependent on the aspect ratio of PMN-PZT single crystal fiber plates for dual potential-inducing mechanisms, i.e., the magnetic torque (flexural transverse) and magnetic magnetostrictive (in-plane longitudinal) vibrations. However, magnetostrictive vibrations rather than magnetic torque dominate the generated output energy. The experimental results show good agreement with the results of the finite element analysis. The magneto-mechano-electric harvester with a PMN-PZT single crystal fiber aspect ratio of 1.6 shows a ∼440% increment in the root mean square voltage and power and a ∼300% enhancement in the power density measured at a load resistance of 100 kΩ and a magnetic field of 10 Oe.

Suggested Citation

  • Kumar, Ajeet & Park, Sung Hoon & Patil, Deepak Rajaram & Hwang, Geon-Tae & Ryu, Jungho, 2022. "Effect of aspect ratio of piezoelectric constituents on the energy harvesting performance of magneto-mechano-electric generators," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023264
    DOI: 10.1016/j.energy.2021.122078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng Xu & Benjamin J. Hansen & Zhong Lin Wang, 2010. "Piezoelectric-nanowire-enabled power source for driving wireless microelectronics," Nature Communications, Nature, vol. 1(1), pages 1-5, December.
    2. Xun Li & Fei Zhang & Haiying He & Joseph J. Berry & Kai Zhu & Tao Xu, 2020. "On-device lead sequestration for perovskite solar cells," Nature, Nature, vol. 578(7796), pages 555-558, February.
    3. Dejiu Fan & Tobias Burger & Sean McSherry & Byungjun Lee & Andrej Lenert & Stephen R. Forrest, 2020. "Near-perfect photon utilization in an air-bridge thermophotovoltaic cell," Nature, Nature, vol. 586(7828), pages 237-241, October.
    4. Sangtae Kim & Soon Ju Choi & Kejie Zhao & Hui Yang & Giorgia Gobbi & Sulin Zhang & Ju Li, 2016. "Electrochemically driven mechanical energy harvesting," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Lipeng & Han, Yuhang & Liu, Renwen & Hu, Renhui & Yu, Gang & Cheng, Guangming, 2022. "Design and performance study of a rotating piezoelectric wind energy harvesting device with wind turbine structure," Energy, Elsevier, vol. 256(C).
    2. Gu, Shanghao & Xu, Weihan & Xi, Kunling & Luo, Anxin & Fan, Kangqi & Wang, Fei, 2024. "High-performance piezoelectric energy harvesting system with anti-interference capability for smart grid monitoring," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    2. Ziyao Yue & Hu Guo & Yuanhang Cheng, 2023. "Toxicity of Perovskite Solar Cells," Energies, MDPI, vol. 16(10), pages 1-24, May.
    3. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    4. Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
    5. Xue, Weijiang & Chen, Tianwu & Ren, Zhichu & Kim, So Yeon & Chen, Yuming & Zhang, Pengcheng & Zhang, Sulin & Li, Ju, 2020. "Molar-volume asymmetry enabled low-frequency mechanical energy harvesting in electrochemical cells," Applied Energy, Elsevier, vol. 273(C).
    6. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Selvan, Krishna Veni & Mohamed Ali, Mohamed Sultan, 2016. "Micro-scale energy harvesting devices: Review of methodological performances in the last decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1035-1047.
    8. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.
    9. Cao, Dong-Xing & Lu, Yi-Ming & Lai, Siu-Kai & Mao, Jia-Jia & Guo, Xiang-Ying & Shen, Yong-Jun, 2022. "A novel soft encapsulated multi-directional and multi-modal piezoelectric vibration energy harvester," Energy, Elsevier, vol. 254(PB).
    10. Hu, Yili & Yi, Zhiran & Dong, Xiaoxue & Mou, Fangxiao & Tian, Yingwei & Yang, Qinghai & Yang, Bin & Liu, Jingquan, 2019. "High power density energy harvester with non-uniform cantilever structure due to high average strain distribution," Energy, Elsevier, vol. 169(C), pages 294-304.
    11. Ju Han & Sung Hyun Park & Ye Seul Jung & Yong Soo Cho, 2024. "High-performance piezoelectric energy harvesting in amorphous perovskite thin films deposited directly on a plastic substrate," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Deokjae Heo & Jihoon Chung & Gunsub Shin & Minhyeong Seok & Chanhee Lee & Sangmin Lee, 2021. "Yo-Yo Inspired Triboelectric Nanogenerator," Energies, MDPI, vol. 14(7), pages 1-9, March.
    13. Bo Chen & Chengbin Fei & Shangshang Chen & Hangyu Gu & Xun Xiao & Jinsong Huang, 2021. "Recycling lead and transparent conductors from perovskite solar modules," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Giacomo Clementi & Francesco Cottone & Alessandro Di Michele & Luca Gammaitoni & Maurizio Mattarelli & Gabriele Perna & Miquel López-Suárez & Salvatore Baglio & Carlo Trigona & Igor Neri, 2022. "Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-44, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.