IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221020119.html
   My bibliography  Save this article

The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water

Author

Listed:
  • Kang, Shijie
  • Sun, Youhong
  • Qiao, Mingyang
  • Li, Shengli
  • Deng, Sunhua
  • Guo, Wei
  • Li, Jiasheng
  • He, Wentong

Abstract

The coupling effect of subcritical water and FeCl3 on the extraction of bulk Huadian oil shale was experimentally investigated. The results showed that, with the addition of FeCl3, the yield of shale oil in subcritical water extraction was enhanced by 58.5 % at 20 h and the time required for the maximum shale oil production was reduced by 43 %. The group compositions of shale oil and residual bitumen as well as the elemental analysis of residual kerogen revealed that FeCl3 could trigger the pyrolysis reaction networks of kerogen by promoting the cleavage of heteroatom bonds, and accelerate the decomposition of asphaltenes in residual bitumen. GC-MS analysis of n-alkanes in shale oil and residual bitumen showed that FeCl3 promoted the secondary cracking of saturated hydrocarbons in residual bitumen rather than in shale oil due to the adsorption of Fe3+ in shale matrix. The solid-state 13C NMR analysis of the residual kerogen indicated that the polycondensation of kerogen was inhibited and the ring-opening reaction of aromatic structure was promoted in the presence of FeCl3. In addition, the acidic FeCl3 solution induced the decomposition of carbonate minerals in oil shale matrix to provide additional mass transfer channels for the migration of bitumen products.

Suggested Citation

  • Kang, Shijie & Sun, Youhong & Qiao, Mingyang & Li, Shengli & Deng, Sunhua & Guo, Wei & Li, Jiasheng & He, Wentong, 2022. "The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221020119
    DOI: 10.1016/j.energy.2021.121763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221020119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhan, Honglei & Wang, Yan & Chen, Mengxi & Chen, Ru & Zhao, Kun & Yue, Wenzheng, 2020. "An optical mechanism for detecting the whole pyrolysis process of oil shale," Energy, Elsevier, vol. 190(C).
    2. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    3. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    4. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    5. Lu, Yang & Wang, Ying & Zhang, Jing & Wang, Qi & Zhao, Yuqiong & Zhang, Yongfa, 2020. "Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics," Energy, Elsevier, vol. 200(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Da & Yin, Helin & Liu, Yupeng & Li, Ji & Pan, Shuo & Wang, Qing, 2022. "Effect of final pyrolysis temperature on the composition and structure of shale oil: Synergistic use of multiple analysis and testing methods," Energy, Elsevier, vol. 252(C).
    2. Rongsheng Zhao & Luquan Ren & Sunhua Deng & Youhong Sun & Zhiyong Chang, 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character," Energies, MDPI, vol. 14(23), pages 1-12, November.
    3. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    4. Zhang, Xu & Guo, Wei & Pan, Junfan & Zhu, Chaofan & Deng, Sunhua, 2024. "In-situ pyrolysis of oil shale in pressured semi-closed system: Insights into products characteristics and pyrolysis mechanism," Energy, Elsevier, vol. 286(C).
    5. Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    2. Pan, Bin & Yin, Xia & Yang, Zhengru & Ghanizadeh, Amin & Debuhr, Chris & Clarkson, Christopher R. & Gou, Feifei & Zhu, Weiyao & Ju, Yang & Iglauer, Stefan, 2024. "Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy," Applied Energy, Elsevier, vol. 363(C).
    3. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    4. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    5. Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
    6. Zhang, Xu & Guo, Wei & Pan, Junfan & Zhu, Chaofan & Deng, Sunhua, 2024. "In-situ pyrolysis of oil shale in pressured semi-closed system: Insights into products characteristics and pyrolysis mechanism," Energy, Elsevier, vol. 286(C).
    7. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    8. Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
    9. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    10. Siqi Ren & Jing Zhao & Zhiqin Kang & Guoying Wang & Dong Yang, 2023. "Suitability Analysis of the Deformation Behavior of Metal Corrugated Casing in High-Temperature Wellbore," Energies, MDPI, vol. 16(16), pages 1-15, August.
    11. Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
    12. Rongsheng Zhao & Luquan Ren & Sunhua Deng & Youhong Sun & Zhiyong Chang, 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character," Energies, MDPI, vol. 14(23), pages 1-12, November.
    13. Xudong Huang & Dong Yang & Zhiqin Kang, 2020. "Study on the Pore and Fracture Connectivity Characteristics of Oil Shale Pyrolyzed by Superheated Steam," Energies, MDPI, vol. 13(21), pages 1-14, November.
    14. Liu, Xiangchun & Song, Huan & Han, Kangshun & Hu, Jun & Zhao, Zhigang & Cui, Ping, 2023. "Insight into low-temperature co-pyrolysis of Qinglongshan lean coal with organic matter in Huadian oil shale," Energy, Elsevier, vol. 285(C).
    15. Xu, HengYu & Yu, Hao & Fan, JingCun & Xia, Jun & Liu, He & Wu, HengAn, 2022. "Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process," Energy, Elsevier, vol. 242(C).
    16. He, Lu & Ma, Yue & Tan, Ting & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2021. "Mechanisms of sulfur and nitrogen transformation during Longkou oil shale pyrolysis," Energy, Elsevier, vol. 232(C).
    17. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1-17, August.
    18. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    19. Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
    20. Dazhong Ren & Zhendong Wang & Fu Yang & Hao Zeng & Chenyuan Lü & Han Wang & Senhao Wang & Shaotao Xu, 2024. "Study on the Applicability of Autothermic Pyrolysis In Situ Conversion Process for Low-Grade Oil Shale: A Case Study of Tongchuan, Ordos Basin, China," Energies, MDPI, vol. 17(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221020119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.