IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v237y2021ics0360544221017941.html
   My bibliography  Save this article

A lifecycle comparison of natural resource use and climate impact of biofuel and electric cars

Author

Listed:
  • Sathre, Roger
  • Gustavsson, Leif

Abstract

Here we compare the biomass feedstock use, primary energy use, net CO2 emission, and cumulative radiative forcing of passenger cars powered by different energy pathways. We consider the full lifecycle of the vehicles, including manufacture and operation. We analyze battery electric vehicles (BEVs) powered by standalone electricity generation using woody biomass, with and without CCS, and with integration of wind electricity. We analyze internal combustion vehicles (ICVs) powered by fossil gasoline and by biomethanol derived from woody biomass, with and without carbon capture and sequestration (CCS). Our system boundaries include all fossil and biogenic emissions from technical systems, and the avoided decay emissions from harvest residue left in the forest. We find that the pathways using electricity to power BEVs have strongly lower climate impacts, compared to the liquid-fueled ICV pathways using biomethanol and gasoline. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling. The pathways using gasoline and biomethanol have substantial climate impact, even with CCS. Regardless of energy pathway, smaller cars have consistently lower climate impact than larger cars. These findings suggest that accelerating the current trend toward vehicle electrification, together with scaling up renewable electricity generation, is a wise strategy for climate-adapted passenger car transport.

Suggested Citation

  • Sathre, Roger & Gustavsson, Leif, 2021. "A lifecycle comparison of natural resource use and climate impact of biofuel and electric cars," Energy, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017941
    DOI: 10.1016/j.energy.2021.121546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    2. Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
    3. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    4. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    5. Arminda Almeida & Nuno Sousa & João Coutinho-Rodrigues, 2019. "Quest for Sustainability: Life-Cycle Emissions Assessment of Electric Vehicles Considering Newer Li-Ion Batteries," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    6. Nguyen, Truong & Gustavsson, Leif, 2020. "Production of district heat, electricity and/or biomotor fuels in renewable-based energy systems," Energy, Elsevier, vol. 202(C).
    7. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    8. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    9. Han Hao & Zhexuan Mu & Shuhua Jiang & Zongwei Liu & Fuquan Zhao, 2017. "GHG Emissions from the Production of Lithium-Ion Batteries for Electric Vehicles in China," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    10. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Pouria & Raeesi, Mehrdad & Changizian, Sina & Teimouri, Aidin & Khoshnevisan, Alireza, 2022. "Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques," Energy, Elsevier, vol. 259(C).
    2. Kocak, Emrah & Bilgili, Faik & Bulut, Umit & Kuskaya, Sevda, 2022. "Is ethanol production responsible for the increase in corn prices?," Renewable Energy, Elsevier, vol. 199(C), pages 689-696.
    3. Teuku Azuar Rizal & Khairil & Mahidin & Husni Husin & Ahmadi & Fahrizal Nasution & Hamdani Umar, 2022. "The Experimental Study of Pangium Edule Biodiesel in a High-Speed Diesel Generator for Biopower Electricity," Energies, MDPI, vol. 15(15), pages 1-15, July.
    4. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    5. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    6. Yang, Pan & Cai, Ximing & Hu, Xinchen & Zhao, Qiankun & Lee, Yuanyao & Khanna, Madhu & Cortés-Peña, Yoel R. & Guest, Jeremy S. & Kent, Jeffrey & Hudiburg, Tara W. & Du, Erhu & John, Steve & Iutzi, Fre, 2022. "An agent-based modeling tool supporting bioenergy and bio-product community communication regarding cellulosic bioeconomy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Truong & Gustavsson, Leif, 2020. "Production of district heat, electricity and/or biomotor fuels in renewable-based energy systems," Energy, Elsevier, vol. 202(C).
    2. Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
    3. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    4. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    5. De Luca Peña, Laura Vittoria & Taelman, Sue Ellen & Bas, Bilge & Staes, Jan & Mertens, Jan & Clavreul, Julie & Préat, Nils & Dewulf, Jo, 2024. "Monetized (socio-)environmental handprint and footprint of an offshore windfarm in the Belgian Continental Shelf: An assessment of local, regional and global impacts," Applied Energy, Elsevier, vol. 353(PA).
    6. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Rueda-Bayona, Juan Gabriel & Cabello Eras, Juan Jose & Chaparro, Tatiana R., 2022. "Impacts generated by the materials used in offshore wind technology on Human Health, Natural Environment and Resources," Energy, Elsevier, vol. 261(PA).
    8. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    9. Yongtao Liu & Chunmei Zhang & Zhuo Hao & Xu Cai & Chuanpan Liu & Jianzhang Zhang & Shu Wang & Yisong Chen, 2023. "Study on the Life Cycle Assessment of Automotive Power Batteries Considering Multi-Cycle Utilization," Energies, MDPI, vol. 16(19), pages 1-24, September.
    10. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2021. "Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    11. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland & Trømborg, Erik & Rørstad, Per Kristian, 2020. "The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector," Applied Energy, Elsevier, vol. 274(C).
    12. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    13. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    14. Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
    15. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    16. Garcia-Teruel, Anna & Rinaldi, Giovanni & Thies, Philipp R. & Johanning, Lars & Jeffrey, Henry, 2022. "Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance," Applied Energy, Elsevier, vol. 307(C).
    17. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    18. Walker, Stuart R.J. & Thies, Philipp R., 2022. "A life cycle assessment comparison of materials for a tidal stream turbine blade," Applied Energy, Elsevier, vol. 309(C).
    19. Michaela Gkantou & Carlos Rebelo & Charalampos Baniotopoulos, 2020. "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers," Energies, MDPI, vol. 13(15), pages 1-21, August.
    20. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2015. "Renewable-based heat supply of multi-apartment buildings with varied heat demands," Energy, Elsevier, vol. 93(P1), pages 1053-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.