IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221017205.html
   My bibliography  Save this article

Integrated modelling and optimal operation analysis of multienergy systems based on Stackelberg game theory

Author

Listed:
  • Guo, Tianyu
  • Li, Peng
  • Wang, Zixuan
  • Shi, Ruyu
  • Han, Zhonghe
  • Xia, Hui
  • Li, Jianyi

Abstract

An integrated modelling and operation method for a multienergy system (MES) is proposed in this paper. First, a coupling matrix equation containing the energy flow in the process of energy production, transmission, conversion, storage and consumption is established. Second, the whole MES is selected as the game subject, and each energy subsystem is selected as the game follower. Then, an integrated model of an MES is modelled to quantify the complementary cold-heat-power-gas multi-energy and source-network-load-storage coordinated interactions based on Stackelberg game theory. Third, the day-ahead MES operation scheme is optimized based on the established model and the equilibrium solution is used to realize a reasonable balance of benefits between the whole MES and its energy subsystems. Numerical studies demonstrate that the proposed method increases the operation cost of the whole MES by ¥68.23 (0.917% increase) but reduces the operation cost of the heat and gas subsystems by ¥254.82 (3.29% decrease) and ¥289.4 (3.72%), respectively, with the objective of minimizing operation cost, and improves the whole system exergy efficiency of the power, heat and gas subsystems by 0.572%, 0.548% and 2.076%, respectively, with the objective of maximizing the exergy efficiency. Thus, one can take into account the different benefits among the whole MES and its energy subsystems and provide a multidimensional dispatch scheme for dispatchers, highlighting the potential for MES development.

Suggested Citation

  • Guo, Tianyu & Li, Peng & Wang, Zixuan & Shi, Ruyu & Han, Zhonghe & Xia, Hui & Li, Jianyi, 2021. "Integrated modelling and optimal operation analysis of multienergy systems based on Stackelberg game theory," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017205
    DOI: 10.1016/j.energy.2021.121472
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    2. Yang, Hongming & Xiong, Tonglin & Qiu, Jing & Qiu, Duo & Dong, Zhao Yang, 2016. "Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response," Applied Energy, Elsevier, vol. 167(C), pages 353-365.
    3. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    4. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    5. Tichi, S.G. & Ardehali, M.M. & Nazari, M.E., 2010. "Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm," Energy Policy, Elsevier, vol. 38(10), pages 6240-6250, October.
    6. Oskouei, Morteza Zare & Mohammadi-Ivatloo, Behnam & Abapour, Mehdi & Shafiee, Mahmood & Anvari-Moghaddam, Amjad, 2021. "Privacy-preserving mechanism for collaborative operation of high-renewable power systems and industrial energy hubs," Applied Energy, Elsevier, vol. 283(C).
    7. Zare Oskouei, Morteza & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Shafiee, Mahmood & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "A hybrid robust-stochastic approach to evaluate the profit of a multi-energy retailer in tri-layer energy markets," Energy, Elsevier, vol. 214(C).
    8. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    9. Li, Peng & Guo, Tianyu & Abeysekera, Muditha & Wu, Jianzhong & Han, Zhonghe & Wang, Zixuan & Yin, Yunxing & Zhou, Fengquan, 2021. "Intraday multi-objective hierarchical coordinated operation of a multi-energy system," Energy, Elsevier, vol. 228(C).
    10. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Matrix modelling of small-scale trigeneration systems and application to operational optimization," Energy, Elsevier, vol. 34(3), pages 261-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan, Zhaohui & Song, Aoye & Yu, Xiaojun & Zhou, Yuekuan, 2024. "Electrification-driven circular economy with machine learning-based multi-scale and cross-scale modelling approach," Energy, Elsevier, vol. 299(C).
    2. Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).
    3. Yan, Haoran & Hou, Hongjuan & Deng, Min & Si, Lengge & Wang, Xi & Hu, Eric & Zhou, Rhonin, 2024. "Stackelberg game theory based model to guide users’ energy use behavior, with the consideration of flexible resources and consumer psychology, for an integrated energy system," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Li, Peng & Guo, Tianyu & Abeysekera, Muditha & Wu, Jianzhong & Han, Zhonghe & Wang, Zixuan & Yin, Yunxing & Zhou, Fengquan, 2021. "Intraday multi-objective hierarchical coordinated operation of a multi-energy system," Energy, Elsevier, vol. 228(C).
    3. Xu, Xiao & Hu, Weihao & Liu, Wen & Du, Yuefang & Huang, Rui & Huang, Qi & Chen, Zhe, 2021. "Look-ahead risk-constrained scheduling for an energy hub integrated with renewable energy," Applied Energy, Elsevier, vol. 297(C).
    4. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    5. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    6. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    7. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    8. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    9. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
    10. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    11. Jin, Xiaolong & Wu, Jianzhong & Mu, Yunfei & Wang, Mingshen & Xu, Xiandong & Jia, Hongjie, 2017. "Hierarchical microgrid energy management in an office building," Applied Energy, Elsevier, vol. 208(C), pages 480-494.
    12. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    13. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    14. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    15. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    16. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    17. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    18. Qin, Chun & Wang, Linqing & Han, Zhongyang & Zhao, Jun & Liu, Quanli, 2021. "Weighted directed graph based matrix modeling of integrated energy systems," Energy, Elsevier, vol. 214(C).
    19. Olamaei, Javad & Nazari, Mohammad Esmaeil & Bahravar, Sepideh, 2018. "Economic environmental unit commitment for integrated CCHP-thermal-heat only system with considerations for valve-point effect based on a heuristic optimization algorithm," Energy, Elsevier, vol. 159(C), pages 737-750.
    20. Cui, Qiong & Ma, Peipei & Huang, Lei & Shu, Jie & Luv, Jie & Lu, Lin, 2020. "Effect of device models on the multiobjective optimal operation of CCHP microgrids considering shiftable loads," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.