IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221013426.html
   My bibliography  Save this article

A novel food waste management framework combining optical sorting system and anaerobic digestion: A case study in Malaysia

Author

Listed:
  • Woon, Kok Sin
  • Phuang, Zhen Xin
  • Lin, Zuchao
  • Lee, Chew Tin

Abstract

Food waste (FW) is a widespread problem affecting most countries in the world. Proper segregation is significant as FW will be contaminated and may not be valorised to value-added commodities once mixed with other wastes. However, public engagement and training to ensure proper segregation can be laborious and time-consuming. An uncomplicated waste segregation process with minimal behavioural change is essential to encourage the public to practise FW segregation at source. Considering the current FW practices and government policies in Malaysia, a novel management framework for FW segregation at source using an optical sorting system, followed by FW valorisation to biogas via anaerobic digestion, is proposed. A life cycle assessment study with four FW disposal and treatment scenarios is conducted. The results indicate that turning FW to electricity via anaerobic digestion is the most environmentally friendly scenario, with 4.92 × 10−4 DALY and 6.30 PDF.m2.y avoided impacts for human health and ecosystem quality, respectively. By turning 80% of daily FW to electricity, it reduces 0.4% of total carbon emissions and contributes 1.1% of total electricity consumption in Malaysia. A sustainable FW management framework is crucial to reduce reliance on landfills and promote circular economy by valorising FW to renewable energy.

Suggested Citation

  • Woon, Kok Sin & Phuang, Zhen Xin & Lin, Zuchao & Lee, Chew Tin, 2021. "A novel food waste management framework combining optical sorting system and anaerobic digestion: A case study in Malaysia," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013426
    DOI: 10.1016/j.energy.2021.121094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    2. De Clercq, Djavan & Wen, Zongguo & Gottfried, Oliver & Schmidt, Franziska & Fei, Fan, 2017. "A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 204-221.
    3. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    4. Nainggolan, Doan & Pedersen, Anders Branth & Smed, Sinne & Zemo, Kahsay Haile & Hasler, Berit & Termansen, Mette, 2019. "Consumers in a Circular Economy: Economic Analysis of Household Waste Sorting Behaviour," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    5. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    6. Ahmad Aiman Zulkifli & Mohd Zulkhairi Mohd Yusoff & Latifah Abd Manaf & Mohd Rafein Zakaria & Ahmad Muhaimin Roslan & Hidayah Ariffin & Yoshihito Shirai & Mohd Ali Hassan, 2019. "Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    7. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    8. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    10. Feiz, Roozbeh & Johansson, Maria & Lindkvist, Emma & Moestedt, Jan & Påledal, Sören Nilsson & Svensson, Niclas, 2020. "Key performance indicators for biogas production—methodological insights on the life-cycle analysis of biogas production from source-separated food waste," Energy, Elsevier, vol. 200(C).
    11. Gerald C. Shurson, 2020. "“What a Waste”—Can We Improve Sustainability of Food Animal Production Systems by Recycling Food Waste Streams into Animal Feed in an Era of Health, Climate, and Economic Crises?," Sustainability, MDPI, vol. 12(17), pages 1-34, August.
    12. Johari, Anwar & Ahmed, Saeed Isa & Hashim, Haslenda & Alkali, Habib & Ramli, Mat, 2012. "Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2907-2912.
    13. Jin, Yiying & Chen, Ting & Chen, Xin & Yu, Zhixin, 2015. "Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant," Applied Energy, Elsevier, vol. 151(C), pages 227-236.
    14. Chien Bong, Cassendra Phun & Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Chin Siong & Peng Tan, William Soo & Lee, Chew Tin, 2017. "Review on the renewable energy and solid waste management policies towards biogas development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 988-998.
    15. Kumaran, Palanisamy & Hephzibah, David & Sivasankari, Ranganathan & Saifuddin, Normanbay & Shamsuddin, Abd. Halim, 2016. "A review on industrial scale anaerobic digestion systems deployment in Malaysia: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 929-940.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    2. Abdul-Wahab Tahiru & Samuel Jerry Cobbina & Wilhemina Asare & Silas Uwumborge Takal, 2024. "Unlocking Energy from Waste: A Comprehensive Analysis of Municipal Solid Waste Recovery Potential in Ghana," World, MDPI, vol. 5(2), pages 1-27, April.
    3. Phemelo Tamasiga & Taghi Miri & Helen Onyeaka & Abarasi Hart, 2022. "Food Waste and Circular Economy: Challenges and Opportunities," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    4. Lyu, Zhengwei & Lan, Hongjie & Hua, Guowei & Cheng, T.C.E. & Xu, Yadong, 2024. "How to promote Chinese food waste-to-energy program? An evolutionary game approach," Energy, Elsevier, vol. 293(C).
    5. Jian Wong, Khai & Keat Ooi, Jun & Sin Woon, Kok & Ren Mong, Guo & Shadman, Saleh & Lam Ng, Wai, 2022. "A country-level Pareto-optimal palm waste utilisation network for economic and environmental sustainability," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roozbeh Feiz & Jonas Ammenberg & Annika Björn & Yufang Guo & Magnus Karlsson & Yonghui Liu & Yuxian Liu & Laura Shizue Moriga Masuda & Alex Enrich-Prast & Harald Rohracher & Kristina Trygg & Sepehr Sh, 2019. "Biogas Potential for Improved Sustainability in Guangzhou, China—A Study Focusing on Food Waste on Xiaoguwei Island," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    2. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    4. Camila Agner D’Aquino & Bruno Alves Pereira & Tulio Ferreira Sawatani & Samantha Coelho de Moura & Alice Tagima & Júlia Carolina Bevervanso Borba Ferrarese & Samantha Christine Santos & Ildo Luis Saue, 2022. "Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    5. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    6. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
    7. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. O'Connor, S. & Ehimen, E. & Pillai, S.C. & Black, A. & Tormey, D. & Bartlett, J., 2021. "Biogas production from small-scale anaerobic digestion plants on European farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Chen Liu & Dami Moon & Atsushi Watabe, 2024. "Assessing the Economic and Environmental Impacts of Anaerobic Digestion for Municipal Organic Waste: A Case Study of Minamisanriku Town, Japan," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    10. Dastjerdi, B. & Strezov, V. & Kumar, R. & Behnia, M., 2019. "An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Tingting Liu & Qian Zhang & Xiaowen Kang & Jiaqi Hou & Tao Luo & Yi Zhang, 2022. "Household Food Waste to Biogas in Västerås, Sweden: A Comprehensive Case Study of Waste Valorization," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    12. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    13. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. repec:zib:zjmerd:3jmerd2018-97-101 is not listed on IDEAS
    15. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Oh, Tick Hui & Hasanuzzaman, Md & Selvaraj, Jeyraj & Teo, Siew Chein & Chua, Shing Chyi, 2018. "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth – An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3021-3031.
    17. Do, Quynh & Ramudhin, Amar & Colicchia, Claudia & Creazza, Alessandro & Li, Dong, 2021. "A systematic review of research on food loss and waste prevention and management for the circular economy," International Journal of Production Economics, Elsevier, vol. 239(C).
    18. Olkis, Christopher & Brandani, Stefano & Santori, Giulio, 2019. "Design and experimental study of a small scale adsorption desalinator," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. AM. Faizal & A. Amirah & Y. H. Tan, 2018. "Energy, Economic And Environmental Impact Of Waste-To-Energy In Malaysia," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 97-101, September.
    20. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    21. Daniel Hoehn & María Margallo & Jara Laso & Ana Fernández-Ríos & Israel Ruiz-Salmón & Rubén Aldaco, 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.