IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v22y1997i12p1151-1158.html
   My bibliography  Save this article

Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building

Author

Listed:
  • Bojic, M.
  • Trifunovic, N.
  • Papadakis, G.
  • Kyritsis, S.

Abstract

An air-to-earth heat exchanger (ATEHE) consists of pipes buried in soil. We have evaluated the technical and economic performance of an ATEHE coupled to the system for heating or cooling of a building that uses 100% fresh air as heating or cooling medium during winter and summer. The soil is divided into elementary layers. The problem solved, is non stationary; however, steady state-energy equations are used for soil layers in each time step. It is found that the use of the ATEHE covers a portion of the daily building needs for space heating or cooling. The cost of the ATEHE energy is lower for summer than for winter.

Suggested Citation

  • Bojic, M. & Trifunovic, N. & Papadakis, G. & Kyritsis, S., 1997. "Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building," Energy, Elsevier, vol. 22(12), pages 1151-1158.
  • Handle: RePEc:eee:energy:v:22:y:1997:i:12:p:1151-1158
    DOI: 10.1016/S0360-5442(97)00055-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544297000558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(97)00055-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    2. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    3. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    4. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    5. Ali Pakari & Saud Ghani, 2021. "Energy Savings Resulting from Using a Near-Surface Earth-to-Air Heat Exchanger for Precooling in Hot Desert Climates," Energies, MDPI, vol. 14(23), pages 1-14, December.
    6. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    7. Thainswemong Choudhury & Anil Misra, 2014. "Minimizing changing climate impact on buildings using easily and economically feasible earth to air heat exchanger technique," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 947-954, October.
    8. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    9. Bojić, M., 2000. "Optimization of heating and cooling of a building by employing refuse and renewable energy," Renewable Energy, Elsevier, vol. 20(4), pages 453-465.
    10. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    12. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    13. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    14. Ozgener, Leyla & Ozgener, Onder, 2010. "Energetic performance test of an underground air tunnel system for greenhouse heating," Energy, Elsevier, vol. 35(10), pages 4079-4085.
    15. Tittelein, Pierre & Achard, Gilbert & Wurtz, Etienne, 2009. "Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method," Applied Energy, Elsevier, vol. 86(9), pages 1683-1691, September.
    16. Hollmuller, Pierre & Lachal, Bernard, 2014. "Air–soil heat exchangers for heating and cooling of buildings: Design guidelines, potentials and constraints, system integration and global energy balance," Applied Energy, Elsevier, vol. 119(C), pages 476-487.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:22:y:1997:i:12:p:1151-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.