IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v229y2021ics0360544221008689.html
   My bibliography  Save this article

Comparison of chars from municipal solid waste and wheat straw for understanding the role of inorganics in char-based catalysts during volatile reforming process

Author

Listed:
  • Mei, Zhenfei
  • He, Xingchu
  • Chen, Dezhen
  • Wang, Na
  • Yin, Lijie
  • Qian, Kezhen
  • Feng, Yuheng

Abstract

Chars from wastes/biomass pyrolysis are widely used as catalysts. But their catalytic mechanism is not clear enough. To explore the role of inorganics in char-based catalysts, in this research, chars from municipal solid wastes (MSW) and wheat straw (WS) were compared for their catalytic performances and structure changes in reforming volatiles from MSW and WS pyrolysis. Results showed that MSW char (ash: 43 wt%) was more active than WS char (ash: 16 wt%) in reforming both volatiles within 500–700 °C, which facilitated higher syngas yield. 74% of the metals existed as non-evaporable acid-soluble inorganics in MSW char, which favored the transformation of microcrystalline carbon into amorphous carbon by carbon gasification yet increased aromaticity of its carbon matrix; while 27% of metals in WS char were organically bound alkali and alkaline-earth metals (AAEMs), and aromaticity of its carbon lattice increased from 0.39 to 0.67 with increase in reforming temperature. Additionally, WS char was characterized with larger aromatic ring size after reforming temperatures. Rich acid-soluble inorganics in MSW char were found to be favorable to its high activity; while migration of AAEMs caused the lower activity of WS char. These findings will help to improve catalytic activity of char-based catalysts.

Suggested Citation

  • Mei, Zhenfei & He, Xingchu & Chen, Dezhen & Wang, Na & Yin, Lijie & Qian, Kezhen & Feng, Yuheng, 2021. "Comparison of chars from municipal solid waste and wheat straw for understanding the role of inorganics in char-based catalysts during volatile reforming process," Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221008689
    DOI: 10.1016/j.energy.2021.120619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Na & Chen, Dezhen & Arena, Umberto & He, Pinjing, 2017. "Hot char-catalytic reforming of volatiles from MSW pyrolysis," Applied Energy, Elsevier, vol. 191(C), pages 111-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Yin, Lijie & Hong, Liu, 2024. "Producing methane from dry municipal solid wastes: A complete roadmap and the influence of char catalyst," Energy, Elsevier, vol. 290(C).
    2. Li, Bin & Huang, Huimin & Xie, Xing & Wei, Juntao & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Volatile-char interactions during biomass pyrolysis: Effects of AAEMs removal and KOH addition in char," Renewable Energy, Elsevier, vol. 219(P1).
    3. Ge, Lichao & Zhao, Can & Zhou, Tianhong & Chen, Simo & Li, Qian & Wang, Xuguang & Shen, Dong & Wang, Yang & Xu, Chang, 2023. "An analysis of the carbonization process of coal-based activated carbon at different heating rates," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    2. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    3. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    4. Gabriel Pereira Colares da Silva & Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jorge Fernando Hungria Ferreira & Josiane Coutinho Mathews & Débora Prissila Reis Sandim & Higor Ribeiro , 2024. "Analysis of the Gravimetric Composition of Urban Solid Waste from the Municipality of Belém/PA," Sustainability, MDPI, vol. 16(13), pages 1-18, June.
    5. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    6. Hachem-Vermette, Caroline & Grewal, Kuljeet Singh, 2019. "Investigation of the impact of residential mixture on energy and environmental performance of mixed use neighborhoods," Applied Energy, Elsevier, vol. 241(C), pages 362-379.
    7. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Yin, Lijie & Hong, Liu, 2024. "Producing methane from dry municipal solid wastes: A complete roadmap and the influence of char catalyst," Energy, Elsevier, vol. 290(C).
    8. Lu, Qiuxiang & Shenfu, Yuan & Chen, Xin & Li, Kuo & Qian, Tao & Zhao, Yanwei & Meng, Lingshuai & Xie, Xiaoguang & Zhao, Yan & Zhou, Yujie, 2023. "The effect of reaction condition on catalytic cracking of wheat straw pyrolysis volatiles over char-based Fe–Ni–Ca catalyst," Energy, Elsevier, vol. 263(PB).
    9. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    10. Anna Poskart & Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Andrzej Skibiński, 2021. "Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy," Energies, MDPI, vol. 14(18), pages 1-17, September.
    11. Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
    12. Yeo, Tze Yuen & Ashok, Jangam & Kawi, Sibudjing, 2019. "Recent developments in sulphur-resilient catalytic systems for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 52-70.
    13. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Zhang, Ruina & Yu, Weiwei, 2022. "Producing eco-methane with raw syngas containing miscellaneous gases and tar by using a municipal solid waste char-based catalyst," Energy, Elsevier, vol. 254(PA).
    14. Sophonrat, Nanta & Sandström, Linda & Zaini, Ilman Nuran & Yang, Weihong, 2018. "Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates," Applied Energy, Elsevier, vol. 229(C), pages 314-325.
    15. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221008689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.