IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics036054422100311x.html
   My bibliography  Save this article

Heat and power generation augmentation planning of isolated microgrid

Author

Listed:
  • Basu, M.

Abstract

Due to raising heat and power demand the microgrid has to be expanded to meet increased power and heat demand. A short-range heat and power generation augmentation planning (HPGAP) of an isolated microgrid incorporating plug-in electric vehicles (PEVs) is described and evaluated here. The objective of HPGAP is to find out the most cost-effective and reliable expansion plan for meeting the forecasted power demand and heat demand over a short-range horizon while fulfilling a large number of technical, reliability and social constraints. An archetypal test system with existing diesel generators, small hydro power plant (SHPP), solar PV plant, wind turbine generator (WTG), biomass-fuel-fired combined heat and power (BCHP) unit, battery energy storage system (BESS), plug-in electric vehicles (PEVs) and candidate solar PV plant, WTG, SHPP, BCHP units and PEVs is considered here. The problem is solved by using self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients (HPSO-TVAC), fast convergence evolutionary programming (FCEP) and differential evolution (DE).

Suggested Citation

  • Basu, M., 2021. "Heat and power generation augmentation planning of isolated microgrid," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s036054422100311x
    DOI: 10.1016/j.energy.2021.120062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100311X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    2. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    3. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.
    4. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    5. Radulovic, Dusko & Skok, Srdjan & Kirincic, Vedran, 2012. "Cogeneration – Investment dilemma," Energy, Elsevier, vol. 48(1), pages 177-187.
    6. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    7. Zidan, Aboelsood & Gabbar, Hossam A. & Eldessouky, Ahmed, 2015. "Optimal planning of combined heat and power systems within microgrids," Energy, Elsevier, vol. 93(P1), pages 235-244.
    8. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    9. Shilaja, C. & Ravi, K., 2017. "Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation," Renewable Energy, Elsevier, vol. 107(C), pages 550-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Fausto L. de Oliveira & Paulo S. G. de Mattos Neto & Hugo Valadares Siqueira & Domingos S. de O. Santos & Aranildo R. Lima & Francisco Madeiro & Douglas A. P. Dantas & Mariana de Morais Cavalcant, 2023. "Forecasting Methods for Photovoltaic Energy in the Scenario of Battery Energy Storage Systems: A Comprehensive Review," Energies, MDPI, vol. 16(18), pages 1-20, September.
    2. Chen, Weidong & Wang, Junnan & Yu, Guanyi & Chen, Jiajia & Hu, Yumeng, 2022. "Research on day-ahead transactions between multi-microgrid based on cooperative game model," Applied Energy, Elsevier, vol. 316(C).
    3. Wang, Shubin & Li, Jiabao & Liu, Xinni & Zhao, Erlong & Eghbalian, Nasrin, 2022. "Multi-level charging stations for electric vehicles by considering ancillary generating and storage units," Energy, Elsevier, vol. 247(C).
    4. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Basu, Mousumi, 2023. "Scenario-based fuel-constrained heat and power scheduling of a remote microgrid," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.
    2. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    3. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    4. Guo, Li & Wang, Nan & Lu, Hai & Li, Xialin & Wang, Chengshan, 2016. "Multi-objective optimal planning of the stand-alone microgrid system based on different benefit subjects," Energy, Elsevier, vol. 116(P1), pages 353-363.
    5. Hong, Ying-Yi & Lin, Jie-Kai, 2013. "Interactive multi-objective active power scheduling considering uncertain renewable energies using adaptive chaos clonal evolutionary programming," Energy, Elsevier, vol. 53(C), pages 212-220.
    6. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    7. Mallol-Poyato, R. & Jiménez-Fernández, S. & Díaz-Villar, P. & Salcedo-Sanz, S., 2016. "Joint optimization of a Microgrid's structure design and its operation using a two-steps evolutionary algorithm," Energy, Elsevier, vol. 94(C), pages 775-785.
    8. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    9. Tan, Yingjie & Meegahapola, Lasantha & Muttaqi, Kashem M., 2014. "A review of technical challenges in planning and operation of remote area power supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 876-889.
    10. Craparo, Emily & Karatas, Mumtaz & Singham, Dashi I., 2017. "A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts," Applied Energy, Elsevier, vol. 201(C), pages 135-147.
    11. Oviedo-Cepeda, J.C. & Serna-Suárez, Ivan & Osma-Pinto, German & Duarte, Cesar & Solano, Javier & Gabbar, Hossam A., 2020. "Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning," Energy, Elsevier, vol. 211(C).
    12. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    13. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    14. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    15. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    16. Xiuyun Wang & Shaoxin Chen & Yibing Zhou & Jian Wang & Yang Cui, 2018. "Optimal Dispatch of Microgrid with Combined Heat and Power System Considering Environmental Cost," Energies, MDPI, vol. 11(10), pages 1-23, September.
    17. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    18. Bismark Singh & Bernard Knueven, 2021. "Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system," Journal of Global Optimization, Springer, vol. 80(4), pages 965-989, August.
    19. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    20. Basu, Mousumi, 2023. "Scenario-based fuel-constrained heat and power scheduling of a remote microgrid," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s036054422100311x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.