IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v218y2021ics0360544220326098.html
   My bibliography  Save this article

Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage

Author

Listed:
  • Shaheen, Irum
  • Ahmad, Khuram Shahzad
  • Zequine, Camila
  • Gupta, Ram K.
  • Thomas, Andrew G.
  • Malik, Mohammad Azad

Abstract

The demand for economic and efficient electrode for energy storage devices has been increased with the rapid advancements in the sustainable synthesis of active material. Herein, bioactive compounds as fuel for the synthesis of electrode material (Co3O4 NPs), were investigated. Functionalization of Co3O4 NPs via organic extract of Euphorbia cognata Boiss have not only revealed the rapid and efficient growth of active materials but also ensured an effective interaction between the fabricated electrode and electrolyte solution for charge storage reactions. The synthesized Co3O4 NPs were scrutinized for its optical, structural, compositional and chemical properties and then investigated by galvanostatic charge discharge, cyclicvoltammetry for determination of its energy storage potential. The fabricated electrode was tested at range of scan rates and current densities to evaluate its charge storage potential at different scan rates and current densities. The phytofunctionalized Co3O4 NPs offered a large accessible active sites for charge storage with capacitance of 103 Fg-1, a maximum energy density of 1.9 Whkg−1, and higher power density of 4.7 KWkg−1. Thus, we have demonstrated the sustainable fabrication of electrode for energy storage applications.

Suggested Citation

  • Shaheen, Irum & Ahmad, Khuram Shahzad & Zequine, Camila & Gupta, Ram K. & Thomas, Andrew G. & Malik, Mohammad Azad, 2021. "Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage," Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326098
    DOI: 10.1016/j.energy.2020.119502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Cheng & Chen, Xiyang, 2019. "Predicting energy consumption: A multiple decomposition-ensemble approach," Energy, Elsevier, vol. 189(C).
    2. Samargandi, Nahla, 2019. "Energy intensity and its determinants in OPEC countries," Energy, Elsevier, vol. 186(C).
    3. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    4. Yang, Ao & Su, Yang & Chien, I-Lung & Jin, Saimeng & Yan, Chenglei & Wei, Shun'an & Shen, Weifeng, 2019. "Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane," Energy, Elsevier, vol. 186(C).
    5. Pupo-Roncallo, Oscar & Campillo, Javier & Ingham, Derek & Hughes, Kevin & Pourkashanian, Mohammed, 2019. "Large scale integration of renewable energy sources (RES) in the future Colombian energy system," Energy, Elsevier, vol. 186(C).
    6. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    7. Guo, Huan & Xu, Yujie & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2020. "Transmission characteristics of exergy for novel compressed air energy storage systems-from compression and expansion sections to the whole system," Energy, Elsevier, vol. 193(C).
    8. Abreu Kang, Takanni Hannaka & da Costa Soares Júnior, Antônio Marques & de Almeida, Adiel Teixeira, 2018. "Evaluating electric power generation technologies: A multicriteria analysis based on the FITradeoff method," Energy, Elsevier, vol. 165(PB), pages 10-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Shuangshuang & Song, Jintao & Wang, Tingting & Liu, Yixue & He, Qing & Liu, Wenyi, 2021. "Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system," Energy, Elsevier, vol. 235(C).
    2. Guo, Huan & Xu, Yujie & Zhang, Xinjing & Zhu, Yilin & Chen, Haisheng, 2021. "Finite-time thermodynamics modeling and analysis on compressed air energy storage systems with thermal storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    4. Chen, Jiaxiang & Yang, Luwei & An, Baolin & Hu, Jianying & Wang, Junjie, 2022. "Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system," Energy, Elsevier, vol. 242(C).
    5. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    6. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Valuing the option to prototype: A case study with Generation Integrated Energy Storage," Energy, Elsevier, vol. 217(C).
    7. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    8. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    11. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    12. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    13. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    14. Wenting Zhang & Minxing Yue, 2021. "The application of building energy management system based on IoT technology in smart city," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 617-628, August.
    15. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    16. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    17. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    18. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    19. Liao, Zhirong & Zhong, Hua & Xu, Chao & Ju, Xing & Ye, Feng & Du, Xiaoze, 2020. "Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems," Applied Energy, Elsevier, vol. 269(C).
    20. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.