IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2057-d532077.html
   My bibliography  Save this article

Influence of Volume Fracturing on Casing Stress in Horizontal Wells

Author

Listed:
  • Jingpeng Wang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    Engineering Technology Research Institute of Xinjiang Oilfield Company, Karamay 834000, China)

  • Youming Xiong

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Zongyu Lu

    (Engineering Technology Research Institute of Xinjiang Oilfield Company, Karamay 834000, China)

  • Jiangang Shi

    (Engineering Technology Research Institute of Xinjiang Oilfield Company, Karamay 834000, China)

  • Jiwei Wu

    (Engineering Technology Research Institute of Xinjiang Oilfield Company, Karamay 834000, China)

Abstract

In horizontal wells, the casing string is affected by the gravity effect, temperature effect, swelling effect, bending effect, friction effect and other mechanical effects. In view of this situation, the mathematical models of casing swelling effect and temperature effect caused by volume fracturing are established. The case analysis shows that the length of the unsealed section in the vertical section has a great influence on the axial shortening of the casing during fracturing. With the increase of the unsealed section length, the axial shortening of the casing increases gradually under the same wellhead pressure. In the process of fracturing, repeated squeezing and pressurization lead to periodic changes of the wellhead pressure, casing deformation and load, which leads to fatigue damage and even fracture of casing. At the same time, a large amount of fracturing fluid is continuously injected through the casing during the fracturing process, which makes the wellbore temperature change greatly. The additional stress caused by the temperature change reduces the casing strength, which has an important impact on the wellbore integrity. The mathematical model of temperature stress and its effect on the casing strength during volume fracturing is established. With the increase of the temperature stress acting on the casing, the casing collapse strength decreases gradually. When the temperature stress reaches 200 MPa, the casing collapse strength decreases to 84% of the original. The research results can provide a reference for the casing integrity design and control in the horizontal well fracturing process.

Suggested Citation

  • Jingpeng Wang & Youming Xiong & Zongyu Lu & Jiangang Shi & Jiwei Wu, 2021. "Influence of Volume Fracturing on Casing Stress in Horizontal Wells," Energies, MDPI, vol. 14(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2057-:d:532077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zheng & Xiong, Youming & Pu, Hui & Sun, Zheng, 2021. "Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zheng & Wei, Yongqi & Xiong, Youming & Peng, Geng & Wang, Guorong & Lu, Jingsheng & Zhong, Lin & Wang, Jingpeng, 2022. "Influence of the location of drilling fluid loss on wellbore temperature distribution during drilling," Energy, Elsevier, vol. 244(PB).
    2. Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).
    3. Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).
    4. Bo Feng & Jin Li & Zaoyuan Li & Xuning Wu & Jian Liu & Sheng Huang & Jinfei Sun, 2023. "Enhancing Environmental Protection in Oil and Gas Wells through Improved Prediction Method of Cement Slurry Temperature," Energies, MDPI, vol. 16(13), pages 1-17, June.
    5. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2057-:d:532077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.