IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220320922.html
   My bibliography  Save this article

Theoretical analysis and experimental study on a low-temperature heat pump sludge drying system

Author

Listed:
  • Zhang, T.
  • Yan, Z.W.
  • Wang, L.Y.
  • Zheng, W.J.
  • Wu, Q.
  • Meng, Q.L.

Abstract

A low-temperature heat pump sludge drying system was constructed and experimentally studied in the present study. The initial and final moisture contents on dry basis of sludge are 1.53 and 0.2, and the drying duration is 5 h. Theoretical models for heat pump circulation and moist air circulation are established and validated with the experimental results. Based on the validated theoretical models, sensitivity analysis of evaporating temperature, condensing temperature, and air mass flow rate on the temperature and humidity of moist air at the outlet of drying closet, drying rate and specific power consumption (SPC) are carried out. The temperature of moist air at the outlet of drying closet increases with increasing evaporating temperature and condensing temperature, while decreases with increasing air mass flow rate. The drying rate decreases with increasing evaporating temperature while increases with increasing condensing temperature, and first increases and then decreases with increasing air mass flow rate. The appreciated air mass flow rate ranges between 0.8 and 1.0 kg/s, and the drying rate around 6.0 kg/10min can be achieved under these conditions. The relative humidity of moist air at the outlet of drying closet shares a similar trend with the drying rate while SPC shows a contrary trend.

Suggested Citation

  • Zhang, T. & Yan, Z.W. & Wang, L.Y. & Zheng, W.J. & Wu, Q. & Meng, Q.L., 2021. "Theoretical analysis and experimental study on a low-temperature heat pump sludge drying system," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320922
    DOI: 10.1016/j.energy.2020.118985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goh, Li Jin & Othman, Mohd Yusof & Mat, Sohif & Ruslan, Hafidz & Sopian, Kamaruzzaman, 2011. "Review of heat pump systems for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4788-4796.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    2. Othman, M.Y. & Hamid, S.A. & Tabook, M.A.S. & Sopian, K. & Roslan, M.H. & Ibarahim, Z., 2016. "Performance analysis of PV/T Combi with water and air heating system: An experimental study," Renewable Energy, Elsevier, vol. 86(C), pages 716-722.
    3. Babu, A.K. & Kumaresan, G. & Raj, V. Antony Aroul & Velraj, R., 2018. "Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 536-556.
    4. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    5. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
    6. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Chiara Terrosi & Sonia Cacini & Gianluca Burchi & Maurizio Cutini & Massimo Brambilla & Carlo Bisaglia & Daniele Massa & Marco Fedrizzi, 2020. "Evaluation of Compressor Heat Pump for Root Zone Heating as an Alternative Heating Source for Leafy Vegetable Cultivation," Energies, MDPI, vol. 13(3), pages 1-15, February.
    8. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    9. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    10. Daghigh, Roonak & Khaledian, Yavar, 2017. "Design and fabrication of a bi-fluid type photovoltaic-thermal collector," Energy, Elsevier, vol. 135(C), pages 112-127.
    11. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    12. Hu, Bin & Liu, Hua & Jiang, Jiatong & Zhang, Zhiping & Li, Hongbo & Wang, R.Z., 2022. "Ten megawatt scale vapor compression heat pump for low temperature waste heat recovery: Onsite application research," Energy, Elsevier, vol. 238(PB).
    13. Hai-Bo Zhao & Kun Wu & Jing-Feng Zhang, 2021. "Simulation Study on Active Air Flow Distribution Characteristics of Closed Heat Pump Drying System with Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-19, October.
    14. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    15. Abdul Hamid, Suhaila & Yusof Othman, Mohd & Sopian, Kamaruzzaman & Zaidi, Saleem H., 2014. "An overview of photovoltaic thermal combination (PV/T combi) technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 212-222.
    16. El Fil, Bachir & Garimella, Srinivas, 2022. "Energy-efficient gas-fired tumble dryer with adsorption thermal storage," Energy, Elsevier, vol. 239(PA).
    17. Luo, Kaiqi & Luo, Ercang & Xie, Xiaoyun & Jiang, Yi, 2024. "A highly efficient heat-driven thermoacoustic system for room-temperature refrigeration by using novel configuration," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.