IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220320181.html
   My bibliography  Save this article

Optimal design of electro-hydraulic active steering system for intelligent transportation environment

Author

Listed:
  • Cui, Taowen
  • Zhao, Wanzhong
  • Tai, Kang

Abstract

The steering system is an important link between driver and vehicle, and it has a significant impact on energy consumption and driving experience. In order to improve the system’s overall performance, the electro-hydraulic active steering (EHAS) system is taken as the design object, which involves steering energy loss, steering road feel, steering sensitivity and steering stability. According to the energy flow analysis of the steering system, the optimization of the parameters of assist motor and rotary valve is the key to improve steering economy. Based on the optimization of structure parameters of EHAS system, control parameters are innovatively introduced into the optimization of steering system performance. The influence of optimization parameters on these evaluation indexes is further explored. Then, the multi-objective optimization model of EHAS system is then established and optimized by a multi-objective genetic algorithm. The optimization results show that the energy loss of EHAS system with optimized structure and control parameters is 9.44% lower than before optimization, and the driving experience is further improved.

Suggested Citation

  • Cui, Taowen & Zhao, Wanzhong & Tai, Kang, 2021. "Optimal design of electro-hydraulic active steering system for intelligent transportation environment," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320181
    DOI: 10.1016/j.energy.2020.118911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Taowen & Zhao, Wanzhong & Wang, Chunyan, 2019. "Design optimization of vehicle EHPS system based on multi-objective genetic algorithm," Energy, Elsevier, vol. 179(C), pages 100-110.
    2. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Guanpeng & Gao, Xue & Zhao, Yijie & Xu, Xiaojun & Jiang, Yue, 2024. "Attitude stability control for 6WID unmanned ground vehicle during steering: A collaborative controller considering minimizing tire slip energy loss," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
    2. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    3. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    4. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    5. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    6. Zhong Huang & Linna Li & Guorong Ding, 2023. "A Daily Air Pollutant Concentration Prediction Framework Combining Successive Variational Mode Decomposition and Bidirectional Long Short-Term Memory Network," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    7. Nie, Ying & Liang, Ni & Wang, Jianzhou, 2021. "Ultra-short-term wind-speed bi-forecasting system via artificial intelligence and a double-forecasting scheme," Applied Energy, Elsevier, vol. 301(C).
    8. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    9. Zhang, Kequan & Qu, Zongxi & Dong, Yunxuan & Lu, Haiyan & Leng, Wennan & Wang, Jianzhou & Zhang, Wenyu, 2019. "Research on a combined model based on linear and nonlinear features - A case study of wind speed forecasting," Renewable Energy, Elsevier, vol. 130(C), pages 814-830.
    10. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    11. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    12. Li, Tenghui & Liu, Xiaolei & Lin, Zi & Morrison, Rory, 2022. "Ensemble offshore Wind Turbine Power Curve modelling – An integration of Isolation Forest, fast Radial Basis Function Neural Network, and metaheuristic algorithm," Energy, Elsevier, vol. 239(PD).
    13. Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    14. Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
    15. Peng, Cheng & Chen, Heng & Lin, Chaoran & Guo, Shuang & Yang, Zhi & Chen, Ke, 2021. "A framework for evaluating energy security in China: Empirical analysis of forecasting and assessment based on energy consumption," Energy, Elsevier, vol. 234(C).
    16. Ju, Liwei & Zhang, Qi & Tan, Zhongfu & Wang, Wei & Xin, He & Zhang, Zehao, 2018. "Multi-agent-system-based coupling control optimization model for micro-grid group intelligent scheduling considering autonomy-cooperative operation strategy," Energy, Elsevier, vol. 157(C), pages 1035-1052.
    17. Hao, Yan & Tian, Chengshi, 2019. "A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 238(C), pages 368-383.
    18. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    19. Hanifi, Shahram & Zare-Behtash, Hossein & Cammarano, Andrea & Lotfian, Saeid, 2023. "Offshore wind power forecasting based on WPD and optimised deep learning methods," Renewable Energy, Elsevier, vol. 218(C).
    20. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.