IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220321472.html
   My bibliography  Save this article

Experimental study of a thin water-film evaporative cooling system to enhance the energy conversion efficiency of a thermoelectric device

Author

Listed:
  • Zheng, Liang Jun
  • Lim, Sungmook
  • Kim, Na Kyong
  • Kang, Dong Hee
  • Youn, Young Jik
  • Lee, Wonoh
  • Kang, Hyun Wook

Abstract

In the study, a new method to enhance the performance of a thermoelectric generator (TEG) device by utilizing the water-film evaporative cooling is proposed. An experimental device was constructed by incorporating a water-film cooling pond with a commercially available TEG. Experiments were performed to investigate the effects of the main operating conditions (ambient temperature Tamb was 25 °C), TEG hot-side temperature (TH = 50–100 °C), ambient relative humidity (RH = 15–90%), and water-film thickness (twater = 1–9 mm) on the TEG output performance. Additionally, the output performance of TEG under different cooling methods was compared. A TEG prototype device was constructed to generate electricity/steam using seawater evaporation cooling without external electrical energy. The results indicated that TEG hot-side temperature and water-film thickness significantly affected output performance. However, the ambient relative humidity did not considerably affect TEG output performance. Given TEG hot-side temperature TH = 100 °C, ambient relative humidity RH = 15%, the TEG prototype device-generated open-circuit voltage of Uopen = 1.55 V, maximum output power of Pmax = 290.32 mW, and a steam generation rate of 9.82 mg/s. The results showed that evaporative cooling is an innovative method to improve the performance of TEG.

Suggested Citation

  • Zheng, Liang Jun & Lim, Sungmook & Kim, Na Kyong & Kang, Dong Hee & Youn, Young Jik & Lee, Wonoh & Kang, Hyun Wook, 2020. "Experimental study of a thin water-film evaporative cooling system to enhance the energy conversion efficiency of a thermoelectric device," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321472
    DOI: 10.1016/j.energy.2020.119040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    2. Shen, Limei & Pu, Xiwang & Sun, Yongjun & Chen, Jiongde, 2016. "A study on thermoelectric technology application in net zero energy buildings," Energy, Elsevier, vol. 113(C), pages 9-24.
    3. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    4. Karthick, Krishnadass & Suresh, S. & Singh, Harjit & Joy, Grashin C & Dhanuskodi, R., 2019. "Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system," Renewable Energy, Elsevier, vol. 134(C), pages 25-43.
    5. Atouei, S. Ahmadi & Rezania, A. & Ranjbar, A.A. & Rosendahl, L.A., 2018. "Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation," Energy, Elsevier, vol. 156(C), pages 311-318.
    6. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation," Energy, Elsevier, vol. 162(C), pages 715-727.
    7. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Liang, Zhaojun & Liang, Yifan & Li, Yanzhe, 2019. "Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery," Applied Energy, Elsevier, vol. 239(C), pages 425-433.
    8. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhu, Liutao & Zhang, Jili & Xu, Guoying & Zhang, Xiaosong, 2023. "A passive evaporative cooling strategy to enhance the electricity production of hybrid PV-STEG system," Applied Energy, Elsevier, vol. 349(C).
    2. Cengiz, Mazlum & Kayri, İsmail & Aydın, Hüseyin, 2024. "A collated overview on the evaporative cooling applications for photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Poddar, V.S. & Ranawade, V.A. & Dhokey, N.B., 2022. "Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance," Renewable Energy, Elsevier, vol. 182(C), pages 817-826.
    4. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    2. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    3. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    4. Elghool, Ali & Basrawi, Firdaus & Ibrahim, Thamir Khalil & Ibrahim, Hassan & Ishak, M. & Hazwan bin Yusof, Mohd & Bagaber, Salem Abdullah, 2020. "Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection," Energy, Elsevier, vol. 208(C).
    5. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    6. Luo, Ding & Yan, Yuying & Li, Ying & Yang, Xuelin & Chen, Hao, 2023. "Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power," Energy, Elsevier, vol. 281(C).
    7. Luo, Ding & Wang, Ruochen & Yan, Yuying & Sun, Zeyu & Zhou, Weiqi & Ding, Renkai, 2021. "Comparison of different fluid-thermal-electric multiphysics modeling approaches for thermoelectric generator systems," Renewable Energy, Elsevier, vol. 180(C), pages 1266-1277.
    8. Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
    9. Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
    10. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery," Applied Energy, Elsevier, vol. 270(C).
    11. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Performance optimization of a converging thermoelectric generator system via multiphysics simulations," Energy, Elsevier, vol. 204(C).
    12. Sourav Bhakta & Balaram Kundu, 2024. "A Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization," Energies, MDPI, vol. 17(5), pages 1-49, February.
    13. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    14. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    15. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    16. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    17. Luo, Ding & Wang, Ruochen & Yan, Yuying & Yu, Wei & Zhou, Weiqi, 2021. "Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery," Applied Energy, Elsevier, vol. 297(C).
    18. Luo, Ding & Sun, Zeyu & Wang, Ruochen, 2022. "Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery," Energy, Elsevier, vol. 238(PB).
    19. Zhang, Ran & Zhang, Hui & Wang, Xu, 2021. "Lateral comparison of the coupling parameters on the novel hexagonal shaped cross flow thermoelectric generator," Energy, Elsevier, vol. 215(PB).
    20. Gen Li & Zhongcheng Wang & Feng Wang & Xiaozhong Wang & Shibo Li & Mingsuo Xue, 2019. "Experimental and Numerical Study on the Effect of Interfacial Heat Transfer on Performance of Thermoelectric Generators," Energies, MDPI, vol. 12(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.