IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220317977.html
   My bibliography  Save this article

Investigating nickel foam as photoanode substrate for potential dye-sensitized solar cells applications

Author

Listed:
  • Alami, Abdul Hai
  • Aokal, Kamilia
  • Faraj, Mohammed

Abstract

In this work, replacing the glass/transparent conductive oxide combination with porous nickel foam is investigated. This approach has the main advantages of reducing losses due to spectral reflection, as well as significantly enhancing the conductivity of the electrode without adversely affecting its transparency. The electrode was tested optically to quantify its transmission, electrically to determine its sheet resistance, electrochemically to investigate its photoresponse and then will be used to construct a dye-sensitized solar cell. The projected benefit of such cells is the ability to design and build cells with any contour to fit façades or solar vehicles, as well as its suitability to host multiple cells that can be electrically connected in series or parallel to push further the concept of modular third generation solar cells. This is highlighted with the encouraging results of superior conductivity (lower sheet resistance) for the nickel foam of 0.00726 Ω sq−1 compared to 7.0599 Ω sq−1 for the FTO. Optically, the nickel foam is more absorptive across the visible range (400–800 nm). The latter exhibits the expected ∼20% reflectance loss, while the foam allows more opportunities to absorb incident radiation. Finally, a photoanode prepared using nickel foam with TiO2 and ruthenium dye was tested, and the charge transfer resistance as low as 667 Ωcm2 at the electrode/electrolyte interface is obtained, which is crucial for successful deployment in solar cell applications.

Suggested Citation

  • Alami, Abdul Hai & Aokal, Kamilia & Faraj, Mohammed, 2020. "Investigating nickel foam as photoanode substrate for potential dye-sensitized solar cells applications," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317977
    DOI: 10.1016/j.energy.2020.118689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    2. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    3. Alami, Abdul Hai & Rajab, Bilal & Aokal, Kamilia, 2017. "Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications," Energy, Elsevier, vol. 139(C), pages 1231-1236.
    4. Alami, Abdul Hai & Abdelkareem, Mohammad Ali & Faraj, Mohammed & Aokal, Kamilia & Al Safarini, Nada, 2020. "Titanium dioxide-coated nickel foam photoelectrodes for direct urea fuel cell applications," Energy, Elsevier, vol. 208(C).
    5. Alami, Abdul Hai & Hawili, Abdullah Abu & Hassan, Rita & Al-Hemyari, Mohammed & Aokal, Kamilia, 2019. "Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system," Renewable Energy, Elsevier, vol. 134(C), pages 603-611.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Liu & Shenghua Du & Qing Ai & Jiaming Gong & Yong Shuai, 2022. "Spectral Radiation Characteristic Measurements of Absorption and Scattering Semitransparent Materials—A Review," Energies, MDPI, vol. 15(23), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    2. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
    3. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    4. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    5. Alami, Abdul Hai & Rajab, Bilal & Abed, Jehad & Faraj, Mohammed & Hawili, Abdullah Abu & Alawadhi, Hussain, 2019. "Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications," Energy, Elsevier, vol. 174(C), pages 526-533.
    6. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    7. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    8. Eisa, Tasnim & Park, Sung-Gwan & Mohamed, Hend Omar & Abdelkareem, Mohammad Ali & Lee, Jieun & Yang, Euntae & Castaño, Pedro & Chae, Kyu-Jung, 2021. "Outstanding performance of direct urea/hydrogen peroxide fuel cell based on precious metal-free catalyst electrodes," Energy, Elsevier, vol. 228(C).
    9. Zhao, Yuanyuan & Pang, Zhibin & Duan, Jialong & Duan, Yanyan & Jiao, Zhengbo & Tang, Qunwei, 2018. "Self-powered monoelectrodes made from graphene composite films to harvest rain energy," Energy, Elsevier, vol. 158(C), pages 555-563.
    10. Chakraborty, Sankhadeep & Dwivedi, Prasoom & Chatterjee, Sushanta K. & Gupta, Rajesh, 2021. "Factors to Promote Ocean Energy in India," Energy Policy, Elsevier, vol. 159(C).
    11. Soudan, Bassel & Darya, Abdollah, 2020. "Autonomous smart switching control for off-grid hybrid PV/battery/diesel power system," Energy, Elsevier, vol. 211(C).
    12. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    13. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    14. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    15. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).
    16. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
    17. Li, Yi & Yu, Hao & Xiao, Yanling & Li, Yi & Liu, Yinjiang & Luo, Xian & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2023. "Numerical verification on the feasibility of compressed carbon dioxide energy storage in two aquifers," Renewable Energy, Elsevier, vol. 207(C), pages 743-764.
    18. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    19. Scalia, Alberto & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio & Tresso, Elena, 2019. "Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices," Energy, Elsevier, vol. 166(C), pages 789-795.
    20. Abdollahi, Nasrin & Rahimi, Masoud, 2020. "Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling," Renewable Energy, Elsevier, vol. 147(P1), pages 302-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.