IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019376.html
   My bibliography  Save this article

Solar photovoltaic refrigeration system coupled with a flexible, cost-effective and high-energy-density chemisorption cold energy storage module

Author

Listed:
  • Zhang, Wenjing
  • Fu, Shikun
  • Gao, Peng
  • Wu, Weidong
  • Pan, Quanwen
  • Wang, Liwei

Abstract

Owing to the environmental pollution and high costs associated with lead-acid batteries, this paper proposes a solar photovoltaic (PV) refrigeration system coupled with a flexible, cost-effective and high-energy-density chemisorption cold energy storage module. Its operation mode includes daytime solar PV refrigeration/cold energy charging mode and nighttime cold energy discharging mode. A novel composite sorbent SrCl2 is developed using expanded natural graphite as matrix and carbon coated aluminum as additive, exhibiting superior heat and mass transfer performance. A sorbent performance test bench is constructed, demonstrating that the cold energy storage density reaches 503.6 kJ/kg at an evaporating temperature of −15 °C, 1.5 times of ice storage. Compression-assisted desorption is adopted to regulate desorption temperature, so that 75–90 °C solar hot water from low-cost non-concentrating solar collectors can be utilized as the driving heat source. For an evaporating temperature of −10 °C and a solar hot water temperature of 90 °C, the electrical coefficient of performance for cold energy storage unit reaches 3.72, representing a 33 % improvement compared to conventional solar PV refrigeration systems. This novel system features characteristics such as low cost, high efficiency and eco-friendliness, offering a promising solution for solar refrigeration.

Suggested Citation

  • Zhang, Wenjing & Fu, Shikun & Gao, Peng & Wu, Weidong & Pan, Quanwen & Wang, Liwei, 2024. "Solar photovoltaic refrigeration system coupled with a flexible, cost-effective and high-energy-density chemisorption cold energy storage module," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019376
    DOI: 10.1016/j.energy.2024.132163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.