IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220314766.html
   My bibliography  Save this article

Evaluation of an α type stirling engine regenerator using a new differential model

Author

Listed:
  • Rutczyk, Bartłomiej
  • Szczygieł, Ireneusz
  • Kabaj, Adam

Abstract

The paper presents an analysis of a Stirling engine regenerator. Due to the high dependence of Stirling engine performance and efficiency on the efficiency of the regenerator, it is imperative, when modeling the engine, to create a regenerator model that is both accurate and which allows for a high computational speed. In this work, the authors propose a one-dimensional, real gas model to work in conjunction with a real gas zero-dimensional differential model of an alpha Stirling engine (which has been discussed in previously published work). This model is compared with simple NTU analysis and CFD modeling.

Suggested Citation

  • Rutczyk, Bartłomiej & Szczygieł, Ireneusz & Kabaj, Adam, 2020. "Evaluation of an α type stirling engine regenerator using a new differential model," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220314766
    DOI: 10.1016/j.energy.2020.118369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220314766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
    2. Andersen, Stig Kildegård & Carlsen, Henrik & Thomsen, Per Grove, 2006. "Preliminary results from simulations of temperature oscillations in Stirling engine regenerator matrices," Energy, Elsevier, vol. 31(10), pages 1371-1383.
    3. Szczygiel, Ireneusz & Bulinski, Zbigniew, 2018. "Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut's impact," Energy, Elsevier, vol. 165(PB), pages 999-1008.
    4. Nielsen, Anders S. & York, Brayden T. & MacDonald, Brendan D., 2019. "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Pengfan & Zhong, Geyu & Niu, Yafeng & Liu, Yingwen, 2022. "Performance optimization of a free piston stirling engine using multi-section regenerators based on the response surface methodology," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szczygiel, Ireneusz & Bulinski, Zbigniew, 2018. "Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut's impact," Energy, Elsevier, vol. 165(PB), pages 999-1008.
    2. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    3. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    4. Al-Nimr, Moh'd & Khashan, Saud A. & Al-Oqla, Hashem, 2023. "Novel techniques to enhance the performance of Stirling engines integrated with solar systems," Renewable Energy, Elsevier, vol. 202(C), pages 894-906.
    5. Rutczyk, Bartlomiej & Szczygieł, Ireneusz, 2021. "Development of internal heat transfer correlations for the cylinders of reciprocating machines," Energy, Elsevier, vol. 230(C).
    6. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
    7. Tlili, I. & Vakkar, Ali, 2020. "Thermodynamic analysis and optimization of solar thermal engine: Performance enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Chen, Pengfan & Zhong, Geyu & Niu, Yafeng & Liu, Yingwen, 2022. "Performance optimization of a free piston stirling engine using multi-section regenerators based on the response surface methodology," Energy, Elsevier, vol. 261(PB).
    9. Al-Nimr, Moh'd & Khashan, Saud & Al-Oqla, Hashem, 2023. "A novel hybrid pyroelectric-Stirling engine power generation system," Energy, Elsevier, vol. 282(C).
    10. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    11. Geng, Jiang-Bo & Xu, Xiao-Yue & Ji, Qiang, 2020. "The time-frequency impacts of natural gas prices on US economic activity," Energy, Elsevier, vol. 205(C).
    12. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    13. Yajuan Wang & Jun’an Zhang & Zhiwei Lu & Bo Liu & Hao Dong, 2023. "Analysis of Fluid-Solid Coupling Radial Heat Transfer Characteristics in a Normal Hexagonal Bundle Regenerator under Oscillating Flow," Energies, MDPI, vol. 16(18), pages 1-27, September.
    14. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    15. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.
    16. Cullen, Barry & McGovern, Jim, 2010. "Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine," Energy, Elsevier, vol. 35(2), pages 1017-1023.
    17. Aryanfar, Yashar & Mohtaram, Soheil & García Alcaraz, Jorge Luis & Sun, HongGuang, 2023. "Energy and exergy assessment and a competitive study of a two-stage ORC for recovering SFGC waste heat and LNG cold energy," Energy, Elsevier, vol. 264(C).
    18. Yajuan Wang & Jun’an Zhang & Zhiwei Lu & Jiayu Liu & Bo Liu & Hao Dong, 2022. "Analytical Solution of Heat Transfer Performance of Grid Regenerator in Inverse Stirling Cycle," Energies, MDPI, vol. 15(19), pages 1-25, September.
    19. Kumaravelu, Thavamalar & Saadon, Syamimi & Abu Talib, Abd Rahim, 2022. "Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system," Energy, Elsevier, vol. 239(PA).
    20. Ibsaine, Rabah & Joffroy, Jean-Marc & Stouffs, Pascal, 2016. "Modelling of a new thermal compressor for supercritical CO2 heat pump," Energy, Elsevier, vol. 117(P2), pages 530-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220314766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.