IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220313578.html
   My bibliography  Save this article

Statistically enhanced model of oil sands operations: Well-to-wheel comparison of in situ oil sands pathways

Author

Listed:
  • Guo, John
  • Orellana, Andrea
  • Sleep, Sylvia
  • Laurenzi, Ian J.
  • MacLean, Heather L.
  • Bergerson, Joule A.

Abstract

Although the life cycle greenhouse gas (GHG) emissions associated with Canadian oil sands have been investigated in recent years, questions remain regarding the source and impact of variability in emissions in this industry over time. This study combines publicly-available data from the fifteen largest operating in situ extraction projects, i.e., cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD) with a statistically-enhanced life cycle model to investigate variability in well-to-wheel (WTW) GHG emissions. We estimate that the WTW GHG emissions from CSS-derived gasoline range from 99 to 114 g CO2eq/MJ (80% confidence interval), 6–22% higher than the RFS2 baseline. The corresponding range for SAGD-derived gasoline is 98–133 g CO2eq/MJ, 5–42% higher than the RFS2 baseline. SAGD-derived gasoline has more variability as some operators “upgrade” their crudes, emitting GHGs, whereas no CSS operator employs upgrading. Without upgrading, the 90th percentile for SAGD emissions would be 114 g CO2eq/MJ. Upstream variability in GHG emissions drives the positively skewed WTW GHG distributions. This demonstrates the importance of understanding the nature and magnitude of variability and uncertainty in decision making.

Suggested Citation

  • Guo, John & Orellana, Andrea & Sleep, Sylvia & Laurenzi, Ian J. & MacLean, Heather L. & Bergerson, Joule A., 2020. "Statistically enhanced model of oil sands operations: Well-to-wheel comparison of in situ oil sands pathways," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220313578
    DOI: 10.1016/j.energy.2020.118250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in upgrading and refining of Canada's oil sands products," Energy, Elsevier, vol. 83(C), pages 65-79.
    2. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands," Applied Energy, Elsevier, vol. 143(C), pages 189-199.
    3. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Life cycle assessment of greenhouse gas emissions from Canada's oil sands-derived transportation fuels," Energy, Elsevier, vol. 88(C), pages 544-554.
    4. G. Kent Fellows & Robert Mansell & Ronald Schlenker & Jennifer Winter, 2017. "Public-Interest Benefit Evaluation of Partial-Upgrading Technology," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 10(1), January.
    5. Akbilgic, Oguz & Zhu, Da & Gates, Ian D. & Bergerson, Joule A., 2015. "Prediction of steam-assisted gravity drainage steam to oil ratio from reservoir characteristics," Energy, Elsevier, vol. 93(P2), pages 1663-1670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    2. Di Lullo, Giovanni & Zhang, Hao & Kumar, Amit, 2017. "Uncertainty in well-to-tank with combustion greenhouse gas emissions of transportation fuels derived from North American crudes," Energy, Elsevier, vol. 128(C), pages 475-486.
    3. Sapkota, Krishna & Oni, Abayomi Olufemi & Kumar, Amit & Linwei, Ma, 2018. "The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region," Applied Energy, Elsevier, vol. 223(C), pages 273-292.
    4. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    5. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    6. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).
    7. Hannouf, Marwa & Assefa, Getachew & Gates, Ian, 2021. "Carbon intensity threshold for Canadian oil sands industry using planetary boundaries: Is a sustainable carbon-negative industry possible?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Rui Xing & Diego V. Chiappori & Evan J. Arbuckle & Matthew T. Binsted & Evan G. R. Davies, 2021. "Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO 2 Emissions, and Supply Costs," Energies, MDPI, vol. 14(19), pages 1-14, October.
    9. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Life cycle assessment of greenhouse gas emissions from Canada's oil sands-derived transportation fuels," Energy, Elsevier, vol. 88(C), pages 544-554.
    10. Lazzaroni, Edoardo Filippo & Elsholkami, Mohamed & Arbiv, Itai & Martelli, Emanuele & Elkamel, Ali & Fowler, Michael, 2016. "Energy infrastructure modeling for the oil sands industry: Current situation," Applied Energy, Elsevier, vol. 181(C), pages 435-445.
    11. Babkir Ali, 2020. "Integration of Impacts on Water, Air, Land, and Cost towards Sustainable Petroleum Oil Production in Alberta, Canada," Resources, MDPI, vol. 9(6), pages 1-17, May.
    12. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    13. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    14. Garret Kent Fellows & Jennifer Winter & Alaz Munzur, 2023. "An Analysis of Industrial Policy Mechanisms to Support Commercial Deployment of Bitumen Partial Upgrading in Alberta," Energies, MDPI, vol. 16(6), pages 1-49, March.
    15. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    16. Chen, Leyuan & Wang, Yao & Jiang, Yancui & Zhang, Caizhi & Liao, Quan & Li, Jun & Wu, Jihao & Gao, Xin, 2024. "Life cycle assessment of liquid hydrogen fuel for vehicles with different production routes in China," Energy, Elsevier, vol. 299(C).
    17. Di Lullo, G. & Oni, A.O. & Kumar, A., 2023. "The development of complex engineering models using artificial neural network-based proxy models for life cycle assessments of energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Daria Surovtseva & Enda Crossin & Robert Pell & Laurence Stamford, 2022. "Toward a life cycle inventory for graphite production," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 964-979, June.
    19. Parra, Rony & Di Felice, Louisa Jane & Giampietro, Mario & Ramos-Martin, Jesus, 2018. "The metabolism of oil extraction: A bottom-up approach applied to the case of Ecuador," Energy Policy, Elsevier, vol. 122(C), pages 63-74.
    20. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2015. "A dynamic model to optimize municipal electric power systems by considering carbon emission trading under uncertainty," Energy, Elsevier, vol. 88(C), pages 636-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220313578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.