IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220312676.html
   My bibliography  Save this article

3D CFD analysis of a diamond lattice-based porous burner

Author

Listed:
  • Billerot, Pierre-Lou
  • Dufresne, Louis
  • Lemaire, Romain
  • Seers, Patrice

Abstract

Innovative 3D metal and ceramic additive printing technologies allow manufacturing porous media with a tailored design pattern, unlike the sponge-like matrices commonly used in porous media burners. Based on this technology, this paper aims at modeling, at the pore scale, the flow behavior and combustion features within a structured diamond lattice pattern offering an isotropic and homogeneous porous medium as would be printed using additive manufacturing. A low porosity, 15 pores per inch, porous medium has been tested at equivalence ratios ranging from 0.55 to 0.8. Energy analysis of the proposed 3D model showed that solid radiation losses are negligible compared to solid conduction and convection. The heat transfer analysis reveals that the energy recirculation efficiency reaches a maximum value of 82% at lean-combustion regime. At the pore scale, a symmetrical flow pattern has been observed until a critical Reynolds number of 65 is reached. Based on the flow spatial variations, dispersion has been analyzed and compared with data reported in random structures. Using a lattice structure results in a more homogeneous energy release with less temperature spatial variations. This offers the advantage of decreasing thermal constraints associated with temperature gradients which induce breakage in random structure burners.

Suggested Citation

  • Billerot, Pierre-Lou & Dufresne, Louis & Lemaire, Romain & Seers, Patrice, 2020. "3D CFD analysis of a diamond lattice-based porous burner," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312676
    DOI: 10.1016/j.energy.2020.118160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbari, M.H. & Riahi, P. & Roohi, R., 2009. "Lean flammability limits for stable performance with a porous burner," Applied Energy, Elsevier, vol. 86(12), pages 2635-2643, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasily B. Novozhilov & Boris V. Lidskii & Vladimir S. Posvyanskii, 2022. "Different Modes of Combustion Wave on a Lattice Burner," Mathematics, MDPI, vol. 10(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaolei & Hu, Longhua & Delichatsios, Michael A. & Zhang, Jianping, 2019. "Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames," Applied Energy, Elsevier, vol. 254(C).
    2. Akbari, M.H. & Riahi, P., 2010. "Investigation of the structural and reactants properties on the thermal characteristics of a premixed porous burner," Applied Energy, Elsevier, vol. 87(4), pages 1433-1440, April.
    3. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    4. Yu, Zhi-Qiang & Feng, Yong-Liang & Zhou, Wen-Jing & Jin, Yu & Li, Ming-Jie & Li, Zeng-Yao & Tao, Wen-Quan, 2013. "Study on flow and heat transfer characteristics of composite porous material and its performance analysis by FSP and EDEP," Applied Energy, Elsevier, vol. 112(C), pages 1367-1375.
    5. Wang, Hongmin & Wei, Chunzhi & Zhao, Pinghui & Ye, Taohong, 2014. "Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion," Energy, Elsevier, vol. 72(C), pages 195-200.
    6. Zangeneh, Vahid & Alipoor, Alireza, 2021. "Stability study of hydrogen-air flame in a conical porous burner," Energy, Elsevier, vol. 215(PB).
    7. Gao, Huai-Bin & Qu, Zhi-Guo & He, Ya-ling & Tao, Wen-Quan, 2012. "Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters," Applied Energy, Elsevier, vol. 100(C), pages 295-302.
    8. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.