IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221004047.html
   My bibliography  Save this article

Towards CO2-neutral process heat generation for continuous reheating furnaces in steel hot rolling mills – A case study

Author

Listed:
  • Schmitz, N.
  • Sankowski, L.
  • Kaiser, F.
  • Schwotzer, C.
  • Echterhof, T.
  • Pfeifer, H.

Abstract

The aim of a massive reduction of CO2-emissions results in a move away from fossil fuels. In the hot strip production of steel, almost exclusively gas-fired furnaces are currently used due to the lower energy costs. On the contrary, it is imperative to convert existing fossil heated processes to CO2-free (green) technologies in the context of the energy-transition. Obvious alternatives are electrical heating or hydrogen combustion, both strongly dependent on the specific electricity generation mix that determines the CO2-emissions. In this case study, different process heat generation options for continuous reheating furnaces in steel hot rolling mills are discussed by a quantitative approach. A state-of-the-art reheating furnace fired with natural gas is used as reference case, while electrical heating, hydrogen-air heating and hydrogen-oxygen heating are the alternatives investigated. The energy balances, the primary energy consumption and the resulting CO2-emissions are compared for the three countries of France, Poland and Germany with regard to the country-specific electricity generation mix. Additionally, the possible development until 2050 is analysed. The results show the high impact of continuous reheating furnaces in steel hot rolling mills on the total CO2-emissions of downstream steel processing. Furthermore, the massive increase in electrical energy consumption of the whole steel production process is highlighted. Each investigated alternative shows a significant potential to save CO2-emissions, depending on the country specific electricity generation mix and the future expansion of renewable energy sources. An increase in H2-production efficiency will both lead to a lower primary energy consumption and lower CO2-emissions for reheating furnaces.

Suggested Citation

  • Schmitz, N. & Sankowski, L. & Kaiser, F. & Schwotzer, C. & Echterhof, T. & Pfeifer, H., 2021. "Towards CO2-neutral process heat generation for continuous reheating furnaces in steel hot rolling mills – A case study," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004047
    DOI: 10.1016/j.energy.2021.120155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221004047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yukun & Tan, CK & Niska, John & Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Varga, Liz & Roach, Paul Alun & Wang, Chunsheng, 2019. "Modelling and simulation of steel reheating processes under oxy-fuel combustion conditions – Technical and environmental perspectives," Energy, Elsevier, vol. 185(C), pages 730-743.
    2. Oliveira, Flávio A.D. & Carvalho, João A. & Sobrinho, Pedro M. & de Castro, André, 2014. "Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces," Energy, Elsevier, vol. 78(C), pages 290-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julian Suer & Marzia Traverso & Nils Jäger, 2022. "Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    2. Zhang, Shuhao & Zhang, Nan & Smith, Robin & Wang, Wanrong, 2022. "A zero carbon route to the supply of high-temperature heat through the integration of solid oxide electrolysis cells and H2–O2 combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Silvia Maria Zanoli & Crescenzo Pepe & Lorenzo Orlietti, 2023. "Synergic Combination of Hardware and Software Innovations for Energy Efficiency and Process Control Improvement: A Steel Industry Application," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsaniderakhshan, Faeze & Mazaheri, Kiumars & Mahmoudi, Yasser, 2020. "Large eddy simulation on combustion noise in a non-premixed turbulent free flame: Effect of oxygen enhancement," Energy, Elsevier, vol. 210(C).
    2. Mayr, Bernhard & Prieler, Rene & Demuth, Martin & Hochenauer, Christoph, 2015. "The usability and limits of the steady flamelet approach in oxy-fuel combustions," Energy, Elsevier, vol. 90(P2), pages 1478-1489.
    3. Hnydiuk-Stefan, Anna & Składzień, Jan, 2017. "Analysis of supercritical coal fired oxy combustion power plant with cryogenic oxygen unit and turbo-compressor," Energy, Elsevier, vol. 128(C), pages 271-283.
    4. Liu, Yiwei & Wang, Jin & Min, Chunhua & Xie, Gongnan & Sundén, Bengt, 2020. "Performance of fuel-air combustion in a reheating furnace at different flowrate and inlet conditions," Energy, Elsevier, vol. 206(C).
    5. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    6. Hu, Yukun & Tan, CK & Niska, John & Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Varga, Liz & Roach, Paul Alun & Wang, Chunsheng, 2019. "Modelling and simulation of steel reheating processes under oxy-fuel combustion conditions – Technical and environmental perspectives," Energy, Elsevier, vol. 185(C), pages 730-743.
    7. Prieler, Rene & Mayr, Bernhard & Demuth, Martin & Spoljaric, Davor & Hochenauer, Christoph, 2015. "Application of the steady flamelet model on a lab-scale and an industrial furnace for different oxygen concentrations," Energy, Elsevier, vol. 91(C), pages 451-464.
    8. Gaber, Christian & Schluckner, Christoph & Wachter, Philipp & Demuth, Martin & Hochenauer, Christoph, 2021. "Experimental study on the influence of the nitrogen concentration in the oxidizer on NOx and CO emissions during the oxy-fuel combustion of natural gas," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.