IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics0360544220310914.html
   My bibliography  Save this article

Thermal modelling of manufacturing processes and HVAC systems

Author

Listed:
  • Mawson, Victoria Jayne
  • Hughes, Ben Richard

Abstract

The two main energy consumers within a manufacturing plant are the HVAC systems and manufacturing processes. Studies have predominately looked at energy demand associated with manufacturing a single product or a production line, as well as analysis of energy use within a building, but little work has investigated the interaction between manufacturing processes and the surrounding building. Dynamic time based building energy simulation was used to determine the thermal behaviour of the manufacturing facility. The study establishes the importance of analysing manufacturing energy flows alongside that of the building in order to capture all thermal and energy flows. The relationship between the energy demand of HVAC systems with manufacturing productivity is determined. The use of the current degree-day method of building analysis was proven inappropriate for manufacturing facilities, due to such significant heat gains from manufacturing equipment, and impact of equipment on indoor conditions. The need for a proactive HVAC system based on manufacturing demand is introduced, allowing for control of the environment prior to significant temperature or humidity changes.

Suggested Citation

  • Mawson, Victoria Jayne & Hughes, Ben Richard, 2020. "Thermal modelling of manufacturing processes and HVAC systems," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310914
    DOI: 10.1016/j.energy.2020.117984
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wright, A.J. & Oates, M.R. & Greenough, R., 2013. "Concepts for dynamic modelling of energy-related flows in manufacturing," Applied Energy, Elsevier, vol. 112(C), pages 1342-1348.
    2. Dababneh, Fadwa & Li, Lin & Sun, Zeyi, 2016. "Peak power demand reduction for combined manufacturing and HVAC system considering heat transfer characteristics," International Journal of Production Economics, Elsevier, vol. 177(C), pages 44-52.
    3. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García Vázquez, C.A. & Cotfas, D.T. & González Santos, A.I. & Cotfas, P.A. & León Ávila, B.Y., 2024. "Reduction of electricity consumption in an AHU using mathematical modelling for controller tuning," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    2. Domenico Palladino & Flavio Scrucca & Nicolandrea Calabrese & Grazia Barberio & Carlo Ingrao, 2021. "Durum-Wheat Straw Bales for Thermal Insulation of Buildings: Findings from a Comparative Energy Analysis of a Set of Wall-Composition Samples on the Building Scale," Energies, MDPI, vol. 14(17), pages 1-19, September.
    3. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    4. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    5. Clyde Zhengdao Li & Yiqian Deng & Yingyi Ya & Vivian W. Y. Tam & Chen Lu, 2023. "Applications of Information Technology in Building Carbon Flow," Sustainability, MDPI, vol. 15(23), pages 1-23, December.
    6. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Valeria Annibaldi & Federica Cucchiella & Marianna Rotilio, 2020. "A Sustainable Solution for Energy Efficiency in Italian Climatic Contexts," Energies, MDPI, vol. 13(11), pages 1-16, June.
    8. Huang, He & Wang, Honglei & Hu, Yu-Jie & Li, Chengjiang & Wang, Xiaolin, 2022. "Optimal plan for energy conservation and CO2 emissions reduction of public buildings considering users' behavior: Case of China," Energy, Elsevier, vol. 261(PA).
    9. Tian, Chuyin & Huang, Guohe & Lu, Chen & Zhou, Xiong & Duan, Ruixin, 2021. "Development of enthalpy-based climate indicators for characterizing building cooling and heating energy demand under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Alexander Brem & Dominic T. J. O’Sullivan & Ken Bruton, 2021. "Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids," Energies, MDPI, vol. 14(24), pages 1-26, December.
    11. Yangyi Song & Ao Du & Tong Cui, 2024. "Using the Degree-Day Method to Analyze Central Heating Energy Consumption in Cities of Northern China," Sustainability, MDPI, vol. 16(3), pages 1-14, January.
    12. Kuru Merve & Calis Gulben, 2020. "Application of time series models for heating degree day forecasting," Organization, Technology and Management in Construction, Sciendo, vol. 12(1), pages 2137-2146, January.
    13. Laura Carnieletto & Borja Badenes & Marco Belliardi & Adriana Bernardi & Samantha Graci & Giuseppe Emmi & Javier F. Urchueguía & Angelo Zarrella & Antonino Di Bella & Giorgia Dalla Santa & Antonio Gal, 2019. "A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps," Energies, MDPI, vol. 12(13), pages 1-23, June.
    14. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    15. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    16. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    17. Kheiri, Farshad & Haberl, Jeff S. & Baltazar, Juan-Carlos, 2023. "Impact of outdoor humidity conditions on building energy performance and environmental footprint in the degree days-based climate classification," Energy, Elsevier, vol. 283(C).
    18. Garwood, Tom Lloyd & Hughes, Ben Richard & O'Connor, Dominic & Calautit, John K. & Oates, Michael R. & Hodgson, Thomas, 2018. "A framework for producing gbXML building geometry from Point Clouds for accurate and efficient Building Energy Modelling," Applied Energy, Elsevier, vol. 224(C), pages 527-537.
    19. Antonino D’Amico & Domenico Panno & Giuseppina Ciulla & Antonio Messineo, 2020. "Multi-Energy School System for Seasonal Use in the Mediterranean Area," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    20. Fumin Ma & Gregory M. P. O’Hare & Tengfei Zhang & Michael J. O’Grady, 2015. "Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems," Energies, MDPI, vol. 8(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.