Using the Degree-Day Method to Analyze Central Heating Energy Consumption in Cities of Northern China
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
- De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
- Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
- Büyükalaca, Orhan & Bulut, Hüsamettin & YIlmaz, Tuncay, 2001. "Analysis of variable-base heating and cooling degree-days for Turkey," Applied Energy, Elsevier, vol. 69(4), pages 269-283, August.
- D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
- Kheiri, Farshad & Haberl, Jeff S. & Baltazar, Juan-Carlos, 2023. "Impact of outdoor humidity conditions on building energy performance and environmental footprint in the degree days-based climate classification," Energy, Elsevier, vol. 283(C).
- Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
- Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
- Küçüktopcu, Erdem & Cemek, Bilal, 2018. "A study on environmental impact of insulation thickness of poultry building walls," Energy, Elsevier, vol. 150(C), pages 583-590.
- Ciulla, Giuseppina & Lo Brano, Valerio & D’Amico, Antonino, 2016. "Modelling relationship among energy demand, climate and office building features: A cluster analysis at European level," Applied Energy, Elsevier, vol. 183(C), pages 1021-1034.
- Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
- Rosa Francesca De Masi & Gerardo Maria Mauro & Silvia Ruggiero & Francesca Villano, 2023. "Predicting Building Energy Demand and Retrofit Potentials Using New Climatic Stress Indices and Curves," Energies, MDPI, vol. 16(16), pages 1-23, August.
- Jiang, Dachuan & Xiao, Weihua & Wang, Jianhua & Wang, Hao & Zhao, Yong & Li, Baoqi & Zhou, Pu, 2018. "Evaluation of the effects of one cold wave on heating energy consumption in different regions of northern China," Energy, Elsevier, vol. 142(C), pages 331-338.
- María Herrando & Antonio Gómez & Norberto Fueyo, 2022. "Supporting Local Authorities to Plan Energy Efficiency in Public Buildings: From Local Needs to Regional Planning," Energies, MDPI, vol. 15(3), pages 1-17, January.
- Kuru Merve & Calis Gulben, 2020. "Application of time series models for heating degree day forecasting," Organization, Technology and Management in Construction, Sciendo, vol. 12(1), pages 2137-2146, January.
- Ciulla, G. & D'Amico, A. & Lo Brano, V. & Traverso, M., 2019. "Application of optimized artificial intelligence algorithm to evaluate the heating energy demand of non-residential buildings at European level," Energy, Elsevier, vol. 176(C), pages 380-391.
- Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
- Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
- Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
- Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
- Sukjoon Oh & John F. Gardner, 2022. "Large Scale Energy Signature Analysis: Tools for Utility Managers and Planners," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
- Liang Chen & Yuanfan Zheng & Jia Yu & Yuanhang Peng & Ruipeng Li & Shilingyun Han, 2024. "A GIS-Based Approach for Urban Building Energy Modeling under Climate Change with High Spatial and Temporal Resolution," Energies, MDPI, vol. 17(17), pages 1-24, August.
- Domenico Palladino & Flavio Scrucca & Nicolandrea Calabrese & Grazia Barberio & Carlo Ingrao, 2021. "Durum-Wheat Straw Bales for Thermal Insulation of Buildings: Findings from a Comparative Energy Analysis of a Set of Wall-Composition Samples on the Building Scale," Energies, MDPI, vol. 14(17), pages 1-19, September.
- Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
More about this item
Keywords
central heating; northern Chinese cities; sustainable development; degree-day method; statistical analysis; base temperatures; energy consumption characteristics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1008-:d:1325682. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.