IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics036054422030921x.html
   My bibliography  Save this article

New SAPO-34-SPEEK composite coatings for adsorption heat pumps: Adsorption performance and thermodynamic analysis

Author

Listed:
  • Calabrese, Luigi
  • Bruzzaniti, Paolo
  • Palamara, Davide
  • Freni, Angelo
  • Proverbio, Edoardo

Abstract

In this paper, a new adsorbent composite coating by using SAPO-34 filler in a sulfonate polyether ether ketone matrix is proposed for thermally efficient adsorption heat pumps. Composite SAPO-34 zeolite based coatings with 80–95 wt% SAPO-34 content were realized. Preliminary morphological analysis, by scanning electron microscopy, highlighted that the coating microstructure is homogeneous and permeable to water vapor diffusion. Water vapor adsorption isobars were measured at equilibrium for all samples in the temperature range 30–120 °C. The results showed the typical S-shaped trend, which is suitable for adsorption heat pump applications. The highest adsorption value was observed for the coating with highest zeolite filler amount, 95 wt%. This batch exhibited a maximum water uptake of about 29.0 wt%, demonstrating that the S-PEEK matrix does not hinder the SAPO-34 adsorption performance. Finally, starting from obtained experimental data of composite materials adsorption capacities the, a simple energy balance based thermodynamic analysis was performed for air conditioning application by using an aluminum finned-flat tube heat exchanger, as reference. Results highlight that this composite coating technology allows cooling COP up to over 5% higher than that of the conventional loose adsorbent grains configuration, indicating the proposed technology promising for practical application in adsorption heat pumps.

Suggested Citation

  • Calabrese, Luigi & Bruzzaniti, Paolo & Palamara, Davide & Freni, Angelo & Proverbio, Edoardo, 2020. "New SAPO-34-SPEEK composite coatings for adsorption heat pumps: Adsorption performance and thermodynamic analysis," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s036054422030921x
    DOI: 10.1016/j.energy.2020.117814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030921X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fong, K.F. & Lee, C.K., 2018. "Impact of adsorbent characteristics on performance of solid desiccant wheel," Energy, Elsevier, vol. 144(C), pages 1003-1012.
    2. Santori, G. & Frazzica, A. & Freni, A. & Galieni, M. & Bonaccorsi, L. & Polonara, F. & Restuccia, G., 2013. "Optimization and testing on an adsorption dishwasher," Energy, Elsevier, vol. 50(C), pages 170-176.
    3. Wang, Qiuwang & Zeng, Min & Ma, Ting & Du, Xueping & Yang, Jianfeng, 2014. "Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization," Applied Energy, Elsevier, vol. 135(C), pages 748-777.
    4. Freni, A. & Calabrese, L. & Malara, A. & Frontera, P. & Bonaccorsi, L., 2019. "Silica gel microfibres by electrospinning for adsorption chillers," Energy, Elsevier, vol. 187(C).
    5. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    2. Patrizia Frontera & Lucio Bonaccorsi & Antonio Fotia & Angela Malara, 2023. "Fibrous Materials for Potential Efficient Energy Recovery at Low-Temperature Heat," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    3. Andreas Velte & Lukas Joos & Gerrit Füldner, 2022. "Experimental Performance Analysis of Adsorption Modules with Sintered Aluminium Fiber Heat Exchangers and SAPO-34-Water Working Pair for Gas-Driven Heat Pumps: Influence of Evaporator Size, Temperatur," Energies, MDPI, vol. 15(8), pages 1-23, April.
    4. Larisa Gordeeva & Yuri Aristov, 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application," Energies, MDPI, vol. 15(20), pages 1-25, October.
    5. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    2. Lucio Bonaccorsi & Antonio Fotia & Angela Malara & Patrizia Frontera, 2020. "Advanced Adsorbent Materials for Waste Energy Recovery," Energies, MDPI, vol. 13(17), pages 1-15, August.
    3. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Freni, A. & Calabrese, L. & Malara, A. & Frontera, P. & Bonaccorsi, L., 2019. "Silica gel microfibres by electrospinning for adsorption chillers," Energy, Elsevier, vol. 187(C).
    5. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    6. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    7. Angela Malara & Fabiola Pantò & Saveria Santangelo & Pier Luigi Antonucci & Michele Fiore & Gianluca Longoni & Riccardo Ruffo & Patrizia Frontera, 2021. "Comparative life cycle assessment of Fe2O3-based fibers as anode materials for sodium-ion batteries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6786-6799, May.
    8. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    9. Park, Myeong Hyeon & Chung, Jun Yeob & Hong, Seong Ho & Shin, Hyun Ho & Lee, Dongchan & Kim, Yongchan, 2023. "Optimized geometric designs of desiccant wheels with metal-organic frameworks considering dehumidification capacity and energy," Energy, Elsevier, vol. 284(C).
    10. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    11. Zhang, Chengyu & Gümmer, Volker, 2020. "Multi-objective optimization and system evaluation of recuperated helicopter turboshaft engines," Energy, Elsevier, vol. 191(C).
    12. Cranston, Jonathan & Askalany, Ahmed & Santori, Giulio, 2019. "Efficient drying in washer dryers by combining sorption and heat pumping," Energy, Elsevier, vol. 183(C), pages 683-692.
    13. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    14. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    16. Patrizia Frontera & Lucio Bonaccorsi & Antonio Fotia & Angela Malara, 2023. "Fibrous Materials for Potential Efficient Energy Recovery at Low-Temperature Heat," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    17. Cristina Baglivo & Paolo Maria Congedo & Pasquale Antonio Donno, 2021. "Analysis of Thermodynamic Cycles of Heat Pumps and Magnetic Refrigerators Using Mathematical Models," Energies, MDPI, vol. 14(4), pages 1-26, February.
    18. Chorowski, Maciej & Pyrka, Piotr, 2015. "Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration," Energy, Elsevier, vol. 92(P2), pages 221-229.
    19. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    20. Thimmaiah, Poovanna Cheppudira & Sharafian, Amir & Rouhani, Mina & Huttema, Wendell & Bahrami, Majid, 2017. "Evaluation of low-pressure flooded evaporator performance for adsorption chillers," Energy, Elsevier, vol. 122(C), pages 144-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s036054422030921x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.