IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics0360544220304084.html
   My bibliography  Save this article

Exploring high-penetration electric vehicles impact on urban power grid based on voltage stability analysis

Author

Listed:
  • Lyu, Lin
  • Yang, Xinran
  • Xiang, Yue
  • Liu, Junyong
  • Jawad, Shafqat
  • Deng, Runqi

Abstract

Electric vehicles (EVs) have received significant attention in recent years. The high penetration of EVs increased the charging load in the distribution network, which has an enormous impact on “transportation and power grid” coupled energy networks. This paper developed the models and methods to evaluate the capacity of electrical energy supply based on voltage stability in the worst charging case scenario, under the existing coupled network. An optimization method with transportation network constraints is proposed to find the worst charging case scenario. In addition, the mobility of EVs is considered to calculate the load margin and the maximum number of EVs charging that a given grid can support in the critical situation. The method and model are simulated by test cases, which provide a perspective for realizing the EVs integration capacity limitation in urban areas considering the coupling relationship between transportation and power grids. Finally, the impact of charging location and route choice in the voltage margin limitation is emphasized.

Suggested Citation

  • Lyu, Lin & Yang, Xinran & Xiang, Yue & Liu, Junyong & Jawad, Shafqat & Deng, Runqi, 2020. "Exploring high-penetration electric vehicles impact on urban power grid based on voltage stability analysis," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304084
    DOI: 10.1016/j.energy.2020.117301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220304084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Zou, Yuan & Yang, Yalian, 2016. "Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization," Energy, Elsevier, vol. 111(C), pages 971-980.
    2. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    3. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2008. "Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008," Institute of Transportation Studies, Working Paper Series qt1bp83874, Institute of Transportation Studies, UC Davis.
    4. Thomas, Dimitrios & D’Hoop, Gaspard & Deblecker, Olivier & Genikomsakis, Konstantinos N. & Ioakimidis, Christos S., 2020. "An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Chen & Lei Zheng & Hengjie Li & Xiping Pei, 2022. "An Assessment Method for the Impact of Electric Vehicle Participation in V2G on the Voltage Quality of the Distribution Network," Energies, MDPI, vol. 15(11), pages 1-14, June.
    2. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Torres, S. & Durán, I. & Marulanda, A. & Pavas, A. & Quirós-Tortós, J., 2022. "Electric vehicles and power quality in low voltage networks: Real data analysis and modeling," Applied Energy, Elsevier, vol. 305(C).
    4. Muhammad Usman & Wajahat Ullah Khan Tareen & Adil Amin & Haider Ali & Inam Bari & Muhammad Sajid & Mehdi Seyedmahmoudian & Alex Stojcevski & Anzar Mahmood & Saad Mekhilef, 2021. "A Coordinated Charging Scheduling of Electric Vehicles Considering Optimal Charging Time for Network Power Loss Minimization," Energies, MDPI, vol. 14(17), pages 1-16, August.
    5. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    6. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    2. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    3. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    4. Kurani, Kenneth S & Axsen, Jonn & Caperello, Nicolette & Davies, Jamie & Stillwater, Tai, 2009. "Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program," Institute of Transportation Studies, Working Paper Series qt9361r9h7, Institute of Transportation Studies, UC Davis.
    5. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    6. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    7. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    8. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    9. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    10. Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).
    11. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    12. Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    13. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
    14. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    15. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    16. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    17. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    18. Davidov, Sreten & Pantoš, Miloš, 2017. "Impact of stochastic driving range on the optimal charging infrastructure expansion planning," Energy, Elsevier, vol. 141(C), pages 603-612.
    19. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    20. Pirouzi, Sasan & Aghaei, Jamshid & Niknam, Taher & Shafie-khah, Miadreza & Vahidinasab, Vahid & Catalão, João P.S., 2017. "Two alternative robust optimization models for flexible power management of electric vehicles in distribution networks," Energy, Elsevier, vol. 141(C), pages 635-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.