IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics0360544219315324.html
   My bibliography  Save this article

Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2 recovery

Author

Listed:
  • Yang, Xiaoyu
  • Zhao, Hongbin

Abstract

The SOFC-STIG distributed energy system is a significant developing trend in the field of energy technology. The SOFC-STIG distributed energy system fueled by LNG with CO2 recovery is put forward in this paper. In the new system, the LNG's cold energy can not only supply cold energy, but also cool compressor inlet air to reduce consumption of compressor work and recovery liquid CO2. Based on each part's mathematical model, the new system's thermodynamic performance calculation model is built by FORTRAN. And with the help of the simulation tool ASPEN Plus, the simulation work was carried out at steady state using Peng-Robinson equation of state. The results of calculation indicate that the thermal efficiency and the power efficiency of this distributed energy system are 72.77% and 57.08% while the exergy efficiency can reach 61.9%. Furthermore, several important variables including fuel flow rate, steam injection ratio and fuel utilization factor are selected to analyze the system performance.

Suggested Citation

  • Yang, Xiaoyu & Zhao, Hongbin, 2019. "Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2 recovery," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315324
    DOI: 10.1016/j.energy.2019.115860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219315324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Heng & Zhao, Hongbin & Du, Huicheng & Zhao, Zefeng & Zhang, Taiheng, 2022. "Thermodynamic performance study of a new diesel-fueled CLHG/SOFC/STIG cogeneration system with CO2 recovery," Energy, Elsevier, vol. 246(C).
    2. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    3. Fanyue Qian & Weijun Gao & Dan Yu & Yongwen Yang & Yingjun Ruan, 2022. "An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Fathy, Ahmed & Rezk, Hegazy & Mohamed Ramadan, Haitham Saad, 2020. "Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process," Energy, Elsevier, vol. 207(C).
    5. Liu, Luyao & Duan, Liqiang & Zheng, Nan & Wang, Qiushi & Zhang, Maotong & Xue, Dong, 2024. "Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation," Energy, Elsevier, vol. 294(C).
    6. Zhang, Jifu & Cui, Peizhe & Yang, Sheng & Zhou, Yaru & Du, Wei & Wang, Yinglong & Deng, Chengwei & Wang, Shuai, 2023. "Thermodynamic analysis of SOFC–CCHP system based on municipal sludge plasma gasification with carbon capture," Applied Energy, Elsevier, vol. 336(C).
    7. Xu, Hao & Xu, Xiafan & Chen, Liubiao & Guo, Jia & Wang, Junjie, 2022. "A novel cryogenic condensation system combined with gas turbine with low carbon emission for volatile compounds recovery," Energy, Elsevier, vol. 248(C).
    8. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.