IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp1017-1031.html
   My bibliography  Save this article

Liquefaction of pineapple peel: Pretreatment and process optimization

Author

Listed:
  • Dahunsi, S.O.

Abstract

This study explored the optimization of pretreatment of pineapple peel for biogas generation. Pretreatments were carried out sulfuric acid and alkaline hydrogen peroxide prior to anaerobic digestion while the response surface methodology (RSM) was used for optimization of the pretreatment procedures. The physical, chemical, proximate and structural compositions of the peels were determined prior to and at the end of the pretreatment procedures. The dynamics of microorganisms in the reactors were also evaluated by rapid molecular methods while the Fourier Transform Infra-red (FTIR) spectroscopy was employed in the identification of the chemical changes as a result of pretreatments. The use of H2O2 pretreatment caused enormous lignin solubilization in the pineapple peel. In comparison, biogas production was 67% more in the alkaline pretreated pineapple peel than the biomass treated with acid and also 51% over the untreated samples. The total biogas volume produced from the acidic pretreated, alkaline pretreated, not sifted untreated and sifted untreated samples are 194.2 ± 3.0, 587.5 ± 5.2, 287.8 ± 2.1 and 245.4 ± 3.1 respectively. Thus, the alkaline pretreated experiment used lower retention time to achieve maximum gas production in this study. The use of alkaline H2O2 on lignocelluloses has remained unpopular prior to this study. However, its usage in this study yielded better result than all the conventional treatments in terms of lignin solubilization and improvement in methane yield. Economically, the use of H2O2 for pretreatment is adjudged feasible because the 1504 kWh t−1 TS thermal energy gain obtained from the biogas produced by the alkaline treated peel exceeded the 921 kWh t−1 TS used in the pretreatment. This gives a net thermal energy of 583 kWh t−1 TS. Whereas, the investment into acidic pretreatment of pineapple peel may not be economically justified because the total thermal energy gain of −200 kWh t−1 TS was far lower than the 1236 kWh t−1 TS thermal energy that was consumed during the pretreatment giving a net thermal energy of −1436 kWh t−1 TS. Therefore, the use of mild alkaline pretreatment is advocated in biogas generation from pineapple peel and also for biofertilizer production mostly in localities of mass production.

Suggested Citation

  • Dahunsi, S.O., 2019. "Liquefaction of pineapple peel: Pretreatment and process optimization," Energy, Elsevier, vol. 185(C), pages 1017-1031.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1017-1031
    DOI: 10.1016/j.energy.2019.07.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barakat, Abdellatif & Chuetor, Santi & Monlau, Florian & Solhy, Abderrahim & Rouau, Xavier, 2014. "Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis," Applied Energy, Elsevier, vol. 113(C), pages 97-105.
    2. Yao, Yiqing & Bergeron, Andre David & Davaritouchaee, Maryam, 2018. "Methane recovery from anaerobic digestion of urea-pretreated wheat straw," Renewable Energy, Elsevier, vol. 115(C), pages 139-148.
    3. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2018. "Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure," Energy, Elsevier, vol. 165(PB), pages 760-768.
    4. Owamah, H.I. & Alfa, M.I. & Dahunsi, S.O., 2014. "Optimization of biogas from chicken droppings with Cymbopogon citratus," Renewable Energy, Elsevier, vol. 68(C), pages 366-371.
    5. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin & Nie, Yongfeng, 2017. "Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion," Energy, Elsevier, vol. 118(C), pages 377-386.
    6. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    2. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    3. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    4. Owamah, H.I. & Enaboifo, M.A. & Izinyon, O.C., 2014. "Treatment of wastewater from raw rubber processing industry using water lettuce macrophyte pond and the reuse of its effluent as biofertilizer," Agricultural Water Management, Elsevier, vol. 146(C), pages 262-269.
    5. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    6. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    7. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    8. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    9. Kehinde O. Olatunji & Daniel M. Madyira & Jacob O. Amos, 2024. "Sustainable enhancement of biogas and methane yield of macroalgae biomass using different pretreatment techniques: A mini-review," Energy & Environment, , vol. 35(2), pages 1050-1088, March.
    10. Licari, A. & Monlau, F. & Solhy, A. & Buche, P. & Barakat, A., 2016. "Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency," Energy, Elsevier, vol. 102(C), pages 335-342.
    11. Nobuki Morita & Yo Toma & Hideto Ueno, 2024. "Acceleration of Composting by Addition of Clinker to Tea Leaf Compost," Waste, MDPI, vol. 2(1), pages 1-13, February.
    12. Sangmin Kim & Seung-Gyun Woo & Joonyeob Lee & Dae-Hee Lee & Seokhwan Hwang, 2019. "Evaluation of Feasibility of Using the Bacteriophage T4 Lysozyme to Improve the Hydrolysis and Biochemical Methane Potential of Secondary Sludge," Energies, MDPI, vol. 12(19), pages 1-14, September.
    13. Li Xu & Meifang Cao & Jiefeng Zhou & Yuxia Pang & Zhixian Li & Dongjie Yang & Shao-Yuan Leu & Hongming Lou & Xuejun Pan & Xueqing Qiu, 2024. "Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Motte, Jean-Charles & Sambusiti, Cecilia & Dumas, Claire & Barakat, Abdellatif, 2015. "Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery," Applied Energy, Elsevier, vol. 147(C), pages 67-73.
    15. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).
    17. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    18. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    19. Díaz-Trujillo, Luis Alberto & Nápoles-Rivera, Fabricio, 2019. "Optimization of biogas supply chain in Mexico considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 139(C), pages 1227-1240.
    20. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1017-1031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.