IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp996-1011.html
   My bibliography  Save this article

An efficient automated higher-order finite element computation technique using parabolic arcs for planar and multiply-connected energy problems

Author

Listed:
  • Smitha, T.V.
  • Nagaraja, K.V.

Abstract

A two-dimensional efficient and most accurate subparametric higher-order finite element technique are offered in this paper for some energy problems. It is used for the computation of eigenvalues over planar and multiply connected curved domains. This technique uses a high-quality and higher-order automated mesh generator developed from curvedHOmesh2d.m. The proposed mesh generator utilizes up to sextic-order (28-noded) one-sided curved triangular finite elements along with parabolic arcs to most accurately match the curved boundaries. One of the complete developed MATLAB code using the higher-order curved meshing technique for a challenging multiply-connected domain is provided for the readers. This computational technique is most accurate owing to the fact that higher-order finite elements are employed. Its efficiency can be witnessed in the drastic decrement of the computational time which has been attained by the use of the subparametric transformations with parabolic arcs. The degree of the Jacobian is of lower-order for each higher-order element compared to the conventional higher-order finite element method. This approach uses an excellent discretization procedure, the best quadrature rule, and an outstanding subparametric finite element process. Thus, the proposed approach enhances the accuracy of the numerical solution of eigenvalues occurring in several electromagnetic applications due to minimal curvature loss. The mathematical explanation of this process with its implementation for the effective computation of eigenvalues is described here. Several electromagnetic problems are known to have spurious solutions in the multiply-connected domains by many of the available numerical methods. Effective numerical results are obtained for these problems as illustrated in the provided examples with the proposed approach. These problems are shown to recognize the legitimacy of the present formulation. For the illustrative cases from the proposed technique, the numerical outcomes and best-published outcomes or analytical predictions are in great accord.

Suggested Citation

  • Smitha, T.V. & Nagaraja, K.V., 2019. "An efficient automated higher-order finite element computation technique using parabolic arcs for planar and multiply-connected energy problems," Energy, Elsevier, vol. 183(C), pages 996-1011.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:996-1011
    DOI: 10.1016/j.energy.2019.06.187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    2. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
    3. Arumugam, Deepak & Logamani, Premalatha & Karuppiah, Santha, 2017. "Improved performance of integrated generator systems with claw pole alternator for aircraft applications," Energy, Elsevier, vol. 133(C), pages 808-821.
    4. Smitha, T.V. & Nagaraja, K.V., 2019. "Application of automated cubic-order mesh generation for efficient energy transfer using parabolic arcs for microwave problems," Energy, Elsevier, vol. 168(C), pages 1104-1118.
    5. Niu, Xiaobo & Liu, Kaipei & Zhang, Yadong & Xiao, Zhenren & Xiao, Gang & Gong, Yujia, 2018. "Research on self-consistent control strategy of multistage synchronous induction coil launcher," Energy, Elsevier, vol. 144(C), pages 1-9.
    6. Seyyedbarzegar, Seyyed Meysam & Mirzaie, Mohammad, 2015. "Heat transfer analysis of metal oxide surge arrester under power frequency applied voltage," Energy, Elsevier, vol. 93(P1), pages 141-153.
    7. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2017. "Proposal and assessment of a solar thermoelectric generation system characterized by Fresnel lens, cavity receiver and heat pipe," Energy, Elsevier, vol. 141(C), pages 215-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Bo & Zhang, Longbin & Liu, Siyu & Bai, Xiaochun & Chen, Guoqing & Shang, Zhiyu, 2024. "Calculation of noise field in main transformer room of indoor substation based on thermal-acoustic coupling," Energy, Elsevier, vol. 297(C).
    2. Ren, Ting & Ma, Tianzeng & Liu, Sha & Li, Xin, 2022. "Bi-level optimization for the energy conversion efficiency improvement in a photocatalytic-hydrogen-production system," Energy, Elsevier, vol. 253(C).
    3. Varun Kumar & K. Chandan & K. V. Nagaraja & M. V. Reddy, 2022. "Heat Conduction with Krylov Subspace Method Using FEniCSx," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
    2. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    3. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    4. Xuan, Zhiwei & Ge, Minghui & Zhao, Chenyang & Li, Yanzhe & Wang, Shixue & Zhao, Yulong, 2024. "Effect of nonuniform solar radiation on the performance of solar thermoelectric generators," Energy, Elsevier, vol. 290(C).
    5. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    6. Song, Kun & Yin, Deshun & Song, Haopeng & Schiavone, Peter & Wu, Xun & Yuan, Lili, 2022. "Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium," Energy, Elsevier, vol. 239(PE).
    7. Jiazheng Lu & Pengkang Xie & Zhen Fang & Jianping Hu, 2018. "Electro-Thermal Modeling of Metal-Oxide Arrester under Power Frequency Applied Voltages," Energies, MDPI, vol. 11(6), pages 1-13, June.
    8. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    9. Jeon, Deok Hwan & Cho, Jae Yong & Jhun, Jeong Pil & Ahn, Jung Hwan & Jeong, Sinwoo & Jeong, Se Yeong & Kumar, Anuruddh & Ryu, Chul Hee & Hwang, Wonseop & Park, Hansun & Chang, Cheulho & Lee, Hyoungjin, 2021. "A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road," Energy, Elsevier, vol. 218(C).
    10. Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
    11. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    12. Fan, Guangcheng & Wang, Yu & Hou, Kai & Miao, Yu & Hu, Yanwen & Yan, Zhongming, 2021. "Research on energy conversion efficiency of the reconfigurable reconnection electromagnetic launcher," Energy, Elsevier, vol. 215(PB).
    13. Guo, Lukai & Wang, Hao, 2023. "Multi-physics modeling of piezoelectric energy harvesters from vibrations for improved cantilever designs," Energy, Elsevier, vol. 263(PC).
    14. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    15. Guo, Lukai & Lu, Qing, 2019. "Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations," Applied Energy, Elsevier, vol. 235(C), pages 963-977.
    16. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    17. Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
    18. Cao, Yangsen & Sha, Aimin & Liu, Zhuangzhuang & Luan, Bo & Li, Jiarong & Jiang, Wei, 2020. "Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation," Energy, Elsevier, vol. 211(C).
    19. Luo, Ding & Li, Zheng & Yan, Yuying & Cao, Jin & Zhang, Haokang & Cao, Bingyang, 2024. "Performance analysis and optimization of an annular thermoelectric generator integrated with vapor chambers," Energy, Elsevier, vol. 307(C).
    20. Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:996-1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.