IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp410-417.html
   My bibliography  Save this article

Laminar burning velocity of n-butane/Hydrogen/Air mixtures at elevated temperatures

Author

Listed:
  • Jithin, E.V.
  • Dinesh, Kadali
  • Mohammad, Akram
  • Velamati, Ratna Kishore

Abstract

The effect of hydrogen (H2) addition in the laminar burning velocity (LBV) of n-butane-air at elevated temperatures is described in this paper. For various equivalence ratios (ϕ), ranging from 0.7 to 1.3, LBV was measured for 20%, 40% and 60% H2 addition to n-butane using a preheated mesoscale diverging channel technique. Using this experimental technique, LBV measurements were conducted for unburnt mixture temperature up to 450 K. The maximum burning velocity has been obtained at equivalence ratio 1.1 for all the mixture conditions. The LBV results at atmospheric condition for n-butane-hydrogen-air mixture were obtained by extrapolating the experimental data at elevated temperatures. “Heat flux method” experimental setup was used for measuring the LBV of n-butane-hydrogen-air mixture at atmospheric condition. The results obtained for LBV at atmospheric conditions with the two different methods at 0%, 20%, 40% and 60% H2 composition in n-butane were found to be in good agreement. The experimental results of LBV for n-butane were compared with the numerical predictions using USC mech II, Aramco mech 2.0 and LLNL reaction mechanisms. The numerical predictions of LBV using Aramco mech 2.0 shows good agreement with experimental data at rich, lean and stoichiometric mixture conditions.

Suggested Citation

  • Jithin, E.V. & Dinesh, Kadali & Mohammad, Akram & Velamati, Ratna Kishore, 2019. "Laminar burning velocity of n-butane/Hydrogen/Air mixtures at elevated temperatures," Energy, Elsevier, vol. 176(C), pages 410-417.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:410-417
    DOI: 10.1016/j.energy.2019.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    2. Domnina Razus & Codina Movileanu & Maria Mitu & Venera Giurcan, 2023. "Expansion Coefficients and Propagation Speeds of Premixed n -Butane–Air Flames," Energies, MDPI, vol. 16(15), pages 1-13, July.
    3. Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
    4. Sitar, Rok & D'Aquila, Alexandra & Jechura, John L. & Wolden, Colin A., 2024. "Techno-economic analysis of zero-carbon ammonia-hydrogen fuel blend production through a catalytic membrane reformer and packed bed reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xianzhong & Yu, Qingbo, 2018. "Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures," Energy, Elsevier, vol. 147(C), pages 876-883.
    2. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    3. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    4. Aravind Muraleedharan & Jithin Edacheri Veetil & Akram Mohammad & Sudarshan Kumar & Ratna Kishore Velamati, 2021. "Effect of Burner Wall Material on Microjet Hydrogen Diffusion Flames near Extinction: A Numerical Study," Energies, MDPI, vol. 14(24), pages 1-24, December.
    5. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    6. Varghese, Robin John & Kishore, V. Ratna & Akram, M. & Yoon, Y. & Kumar, Sudarshan, 2017. "Burning velocities of DME(dimethyl ether)-air premixed flames at elevated temperatures," Energy, Elsevier, vol. 126(C), pages 34-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:410-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.