IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp475-484.html
   My bibliography  Save this article

Integrated strategic heating and cooling planning on regional level for the case of Brasov

Author

Listed:
  • Büchele, Richard
  • Kranzl, Lukas
  • Hummel, Marcus

Abstract

In this work a method for integrated strategic heating and cooling planning applicable for any city or region is presented and applied for the case study city of Brasov. The overall methodology comprises the calculation of the cost-optimal combination of heat savings with either district heating or individual supply technologies for different building groups located in different areas according to the availability of a current district heating network. This optimal combination is calculated for different scenarios and framework conditions, and different indicators like total system costs, total CO2 emissions, share of renewables etc. are calculated and compared to analyse the economic efficiency as well as the CO2 reduction potentials of various options to save heat and supply heat in the buildings. The results of the assessment show that in the assessed case study city heat savings of 58–78% are cheaper than all assessed heat supply options for the different building groups but that renewable supply options are not the most economical alternatives per se under stated conditions. The presented integrated planning process reveals that long term planning is essential to reach decarbonisation goals and that current framework conditions should be adapted to generate more favourable conditions for renewable heating systems.

Suggested Citation

  • Büchele, Richard & Kranzl, Lukas & Hummel, Marcus, 2019. "Integrated strategic heating and cooling planning on regional level for the case of Brasov," Energy, Elsevier, vol. 171(C), pages 475-484.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:475-484
    DOI: 10.1016/j.energy.2019.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2011. "Centralisation and decentralisation in strategic municipal energy planning in Denmark," Energy Policy, Elsevier, vol. 39(3), pages 1338-1351, March.
    2. Nielsen, Steffen, 2014. "A geographic method for high resolution spatial heat planning," Energy, Elsevier, vol. 67(C), pages 351-362.
    3. Nilsson, J. Stenlund & Mårtensson, A., 2003. "Municipal energy-planning and development of local energy-systems," Applied Energy, Elsevier, vol. 76(1-3), pages 179-187, September.
    4. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    5. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    6. Hansen, Kenneth & Connolly, David & Lund, Henrik & Drysdale, David & Thellufsen, Jakob Zinck, 2016. "Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat," Energy, Elsevier, vol. 115(P3), pages 1663-1671.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    8. Pereverza, Kateryna & Pasichnyi, Oleksii & Lazarevic, David & Kordas, Olga, 2017. "Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection," Applied Energy, Elsevier, vol. 186(P2), pages 115-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongli & Li, Ruiwen & Dong, Huanran & Ma, Yuze & Yang, Jiale & Zhang, Fuwei & Zhu, Jinrong & Li, Shuqing, 2019. "Capacity planning and optimization of business park-level integrated energy system based on investment constraints," Energy, Elsevier, vol. 189(C).
    2. Andreas Müller & Marcus Hummel & Lukas Kranzl & Mostafa Fallahnejad & Richard Büchele, 2019. "Open Source Data for Gross Floor Area and Heat Demand Density on the Hectare Level for EU 28," Energies, MDPI, vol. 12(24), pages 1-25, December.
    3. Jalil-Vega, Francisca & García Kerdan, Iván & Hawkes, Adam D., 2020. "Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities," Applied Energy, Elsevier, vol. 262(C).
    4. Herreras Martínez, Sara & Harmsen, Robert & Menkveld, Marijke & Faaij, André & Kramer, Gert Jan, 2022. "Municipalities as key actors in the heat transition to decarbonise buildings: Experiences from local planning and implementation in a learning context," Energy Policy, Elsevier, vol. 169(C).
    5. Richard Büchele & Lukas Kranzl & Michael Hartner & Jeton Hasani, 2020. "Opportunities and Challenges of Future District Heating Portfolios of an Austrian Utility," Energies, MDPI, vol. 13(10), pages 1-20, May.
    6. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Büchele, Richard & Kranzl, Lukas & Hummel, Marcus, 2018. "Integrated Strategic Heating and Cooling Planning on Regional Level for the case of Brasov," MPRA Paper 93235, University Library of Munich, Germany.
    2. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    3. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    4. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    5. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    6. Sommer, Tobias & Sulzer, Matthias & Wetter, Michael & Sotnikov, Artem & Mennel, Stefan & Stettler, Christoph, 2020. "The reservoir network: A new network topology for district heating and cooling," Energy, Elsevier, vol. 199(C).
    7. Giorgio Baldinelli & Francesco Bianchi & Matteo Cornicchia & Francesco D’Alessandro & Gabriele De Micheli & Gaia Gifuni & Andrea Monsignori & Maria Ruggiero & Michele Cenci & Fabrizio Bonucci & France, 2015. "MuSAE: A European Project for the Diffusion of Energy and Environmental Planning in Small-Medium Sized Municipalities," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    8. Leurent, Martin, 2019. "Analysis of the district heating potential in French regions using a geographic information system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Bush, Ruth E. & Bale, Catherine S.E. & Taylor, Peter G., 2016. "Realising local government visions for developing district heating: Experiences from a learning country," Energy Policy, Elsevier, vol. 98(C), pages 84-96.
    10. Thellufsen, Jakob Zinck & Lund, Henrik, 2016. "Roles of local and national energy systems in the integration of renewable energy," Applied Energy, Elsevier, vol. 183(C), pages 419-429.
    11. Herreras Martínez, Sara & Harmsen, Robert & Menkveld, Marijke & Faaij, André & Kramer, Gert Jan, 2022. "Municipalities as key actors in the heat transition to decarbonise buildings: Experiences from local planning and implementation in a learning context," Energy Policy, Elsevier, vol. 169(C).
    12. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    13. Steffen Nielsen & Lars Grundahl, 2018. "District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings," Energies, MDPI, vol. 11(2), pages 1-17, January.
    14. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    15. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    16. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    17. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    18. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    19. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    20. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:475-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.