IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp967-977.html
   My bibliography  Save this article

Numerical and experimental study on the thermal performance of the concrete accumulator for solar heating systems

Author

Listed:
  • Sacharczuk, Jacek
  • Taler, Dawid

Abstract

The article presents the concept of the solar facility operating in the domestic hot water and space heating system, equipped with thermal energy storage based on a water tank and an auxiliary storage module made of concrete elements. A mathematical model of transient heat transfer in the concrete structure using the Control Volume Finite Element Method (CVFEM) has been proposed. The method allows modelling the transient heat conduction based on a rare mesh of nodes in a relatively short time, with accuracy comparable to traditional Finite Element Method (FEM) results including CFD modelling. A laboratory stand has been made for the verification of the model, and a set of comparative measurements has been carried out.

Suggested Citation

  • Sacharczuk, Jacek & Taler, Dawid, 2019. "Numerical and experimental study on the thermal performance of the concrete accumulator for solar heating systems," Energy, Elsevier, vol. 170(C), pages 967-977.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:967-977
    DOI: 10.1016/j.energy.2018.12.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    2. Singh, Harmeet & Saini, R.P. & Saini, J.S., 2010. "A review on packed bed solar energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1059-1069, April.
    3. Hernández-López, I. & Xamán, J. & Chávez, Y. & Hernández-Pérez, I. & Alvarado-Juárez, R., 2016. "Thermal energy storage and losses in a room-Trombe wall system located in Mexico," Energy, Elsevier, vol. 109(C), pages 512-524.
    4. Rabani, Mehran & Kalantar, Vali & Rabani, Mehrdad, 2017. "Heat transfer analysis of a Trombe wall with a projecting channel design," Energy, Elsevier, vol. 134(C), pages 943-950.
    5. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    6. Chwieduk, Dorota A., 2013. "Dynamics of external wall structures with a PCM (phase change materials) in high latitude countries," Energy, Elsevier, vol. 59(C), pages 301-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cisek, Piotr & Taler, Dawid, 2019. "Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS)," Energy, Elsevier, vol. 173(C), pages 755-771.
    2. Dzierwa, Piotr & Taler, Jan & Peret, Patryk & Taler, Dawid & Trojan, Marcin, 2022. "Transient CFD simulation of charging hot water tank," Energy, Elsevier, vol. 239(PC).
    3. Tavakolpour-Saleh, A.R. & Hamzavi, A. & Omidvar, A., 2021. "A novel solar-powered self-blowing air heating system with active control based on a quasi-Stirling cycle," Energy, Elsevier, vol. 227(C).
    4. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    5. Dawid Taler & Jan Taler & Tomasz Sobota & Jarosław Tokarczyk, 2022. "Cooling Modelling of an Electrically Heated Ceramic Heat Accumulator," Energies, MDPI, vol. 15(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    2. Magdalena Nemś, 2020. "Experimental Determination of the Influence of Shape on the Heat Transfer Process in a Crushed Granite Storage Bed," Energies, MDPI, vol. 13(24), pages 1-16, December.
    3. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    5. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    6. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    7. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
    9. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    10. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    11. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    12. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    13. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    14. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    15. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    16. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    17. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    18. Walid Aich & Fatih Selimefendigil & Talal Alqahtani & Salem Algarni & Sultan Alshehery & Lioua Kolsi, 2022. "Thermal and Phase Change Process in a Locally Curved Open Channel Equipped with PCM-PB and Heater during Nanofluid Convection under Magnetic Field," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
    19. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    20. Zukowski, M., 2015. "Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater," Applied Energy, Elsevier, vol. 142(C), pages 10-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:967-977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.