IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v169y2019icp597-612.html
   My bibliography  Save this article

High efficiency solar chemical-looping methane reforming with ceria in a fixed-bed reactor

Author

Listed:
  • Fosheim, Jesse R.
  • Hathaway, Brandon J.
  • Davidson, Jane H.

Abstract

High efficiency solar chemical-looping methane reforming is demonstrated in a prototype reactor operated in a high-flux solar simulator. The reactor includes six tube assemblies, which each comprise a fixed-bed of ceria particles and a gas-phase heat recuperator. The cycle was accomplished by alternating the flow to one tube assembly between CH4 and CO2. In the initial series of experiments, temperature, CH4 concentration, reduction flow rate, and cycle duration were varied to minimize carbon accumulation and maximize efficiency. In the second set of tests, the reactor was operated at optimized conditions for ten cycles at 1228 and 1274 K. Higher temperature favors better performance. At 1274 K, CH4 conversion is 0.36, H2 selectivity is 0.90, CO selectivity is 0.82, CO2 conversion is 0.69, and the energetic upgrade factor is 1.10. Heat recovery effectiveness is over 95%. Solar-to-fuel efficiency is 7% and the thermal efficiency is 25%. Projected solar-to-fuel and thermal efficiencies are 31 and 67% for the full-scale reactor and 56 and 85% for a commercial reactor with lower thermal losses. The demonstrated efficiencies are the highest reported to-date for this process. The projected scaled-up efficiencies suggest solar chemical-looping methane reforming could be a competitive approach for production of solar fuels.

Suggested Citation

  • Fosheim, Jesse R. & Hathaway, Brandon J. & Davidson, Jane H., 2019. "High efficiency solar chemical-looping methane reforming with ceria in a fixed-bed reactor," Energy, Elsevier, vol. 169(C), pages 597-612.
  • Handle: RePEc:eee:energy:v:169:y:2019:i:c:p:597-612
    DOI: 10.1016/j.energy.2018.12.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    2. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Tianzeng & Wang, Lei & Chang, Chun & Akhatov, Jasurjon S. & Fu, Mingkai & Li, Xin, 2019. "A comparative thermodynamic analysis of isothermal and non-isothermal CeO2-based solar thermochemical cycle with methane-driven reduction," Renewable Energy, Elsevier, vol. 143(C), pages 915-921.
    2. Tang, Xin-Yuan & Zhang, Kai-Ran & Yang, Wei-Wei & Dou, Pei-Yuan, 2023. "Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution," Energy, Elsevier, vol. 263(PB).
    3. Srirat Chuayboon & Stéphane Abanades, 2020. "Solar Metallurgy for Sustainable Zn and Mg Production in a Vacuum Reactor Using Concentrated Sunlight," Sustainability, MDPI, vol. 12(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
    2. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    3. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    4. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Margherita Perrero & Davide Papurello, 2023. "Solar Disc Concentrator: Material Selection for the Receiver," Energies, MDPI, vol. 16(19), pages 1-11, September.
    6. Rahul R. Bhosale & Shelby Adams & Zachary Allen & Gabrielle Bennett & Edvinas Berezniovas & Taylor Bishop & Michael Bonnema & Sequoia Clutter & Ryan Fagan & Jordan Halabrin & Mason Hobbs & Daniel Hunt, 2024. "Assessing the Viability of GeO 2 /GeO Redox Thermochemical Cycle for Converting CO 2 into Solar Fuels," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    7. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
    8. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    9. Hasan, Md. Mahedi & Islam, Tamanna & Ratan, Zubair Ahmed & Shaikh, M. Nasiruzzaman & Karim, Mohammad Rezaul & Rahman, Mohammad Mominur & Alharbi, Hamad F. & Uddin, Jamal & Aziz, Md. Abdul & Ahammad, A, 2021. "Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    11. Liu, Xiangyu & Zhang, Hao & Hong, Hui & Jin, Hongguang, 2020. "Experimental study on honeycomb reactor using methane via chemical looping cycle for solar syngas," Applied Energy, Elsevier, vol. 268(C).
    12. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    13. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    14. Wang, Wanrong & Ma, Yingjie & Maroufmashat, Azadeh & Zhang, Nan & Li, Jie & Xiao, Xin, 2022. "Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework," Applied Energy, Elsevier, vol. 305(C).
    15. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    16. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    17. Milanese, Marco & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Multi-parameter optimization of double-loop fluidized bed solar reactor for thermochemical fuel production," Energy, Elsevier, vol. 134(C), pages 919-932.
    18. Ma, Tianzeng & Wang, Lei & Chang, Chun & Akhatov, Jasurjon S. & Fu, Mingkai & Li, Xin, 2019. "A comparative thermodynamic analysis of isothermal and non-isothermal CeO2-based solar thermochemical cycle with methane-driven reduction," Renewable Energy, Elsevier, vol. 143(C), pages 915-921.
    19. Zhu, Xuancan & Shi, Yixiang & Li, Shuang & Cai, Ningsheng, 2018. "Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production," Applied Energy, Elsevier, vol. 229(C), pages 1061-1071.
    20. Fuqiang, Wang & Lanxin, Ma & Ziming, Cheng & Jianyu, Tan & Xing, Huang & Linhua, Liu, 2017. "Radiative heat transfer in solar thermochemical particle reactor: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 935-949.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:169:y:2019:i:c:p:597-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.