IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp619-636.html
   My bibliography  Save this article

Multi-skill project scheduling problem under time-of-use electricity tariffs and shift differential payments

Author

Listed:
  • Najafzad, Hamid
  • Davari-Ardakani, Hamed
  • Nemati-Lafmejani, Reza

Abstract

In real-world environments, project activities may be performed using multi-skill resources. When both manpower and equipment are needed to perform project activities, wage and energy costs may form the main components of total project cost. Most energy-consuming activities do not need to be performed at specific times, and regarding time-of-use electricity tariffs may be performed during off-peak hours to reduce both energy cost and power peak demand. Performing such activities in off-peak hours obliges employers to pay shift differentials which increases the wage cost. Since energy and wage costs move in opposite directions, a model that optimally schedules activities, such that the total cost (sum of energy and wage costs) is minimized is of particular importance from the demand side viewpoint. The present paper presents a bi-objective optimization model for the multi-skill project scheduling problem considering shift differential payments and time-of-use electricity tariffs, aiming to minimize project total cost and completion time. The proposed model is solved using multi-objective decision making techniques. Results show that taking into account both time-of-use electricity tariffs and regular/overtime payments not only reduces energy cost and total project cost, but also reduces the power peak demand, thereby benefiting power distribution networks as well.

Suggested Citation

  • Najafzad, Hamid & Davari-Ardakani, Hamed & Nemati-Lafmejani, Reza, 2019. "Multi-skill project scheduling problem under time-of-use electricity tariffs and shift differential payments," Energy, Elsevier, vol. 168(C), pages 619-636.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:619-636
    DOI: 10.1016/j.energy.2018.11.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218322825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiane Barz & Rainer Kolisch, 2014. "Hierarchical Multi-skill Resource Assignment in the Telecommunications Industry," Production and Operations Management, Production and Operations Management Society, vol. 23(3), pages 489-503, March.
    2. Fisher-Vanden, Karen & Mansur, Erin T. & Wang, Qiong (Juliana), 2015. "Electricity shortages and firm productivity: Evidence from China's industrial firms," Journal of Development Economics, Elsevier, vol. 114(C), pages 172-188.
    3. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    4. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    5. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    6. Zhao, G.Y. & Liu, Z.Y. & He, Y. & Cao, H.J. & Guo, Y.B., 2017. "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, Elsevier, vol. 133(C), pages 142-157.
    7. Wu, Kuei-Yen & Huang, Yun-Hsun & Wu, Jung-Hua, 2018. "Impact of electricity shortages during energy transitions in Taiwan," Energy, Elsevier, vol. 151(C), pages 622-632.
    8. Silvente, Javier & Papageorgiou, Lazaros G., 2017. "An MILP formulation for the optimal management of microgrids with task interruptions," Applied Energy, Elsevier, vol. 206(C), pages 1131-1146.
    9. Linares, Pedro & Rey, Luis, 2013. "The costs of electricity interruptions in Spain. Are we sending the right signals?," Energy Policy, Elsevier, vol. 61(C), pages 751-760.
    10. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    11. Rong Chen & Changyong Liang & Dongxiao Gu & Joseph Y-T. Leung, 2017. "A multi-objective model for multi-project scheduling and multi-skilled staff assignment for IT product development considering competency evolution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6207-6234, November.
    12. Silvente, Javier & Aguirre, Adrián M. & Zamarripa, Miguel A. & Méndez, Carlos A. & Graells, Moisès & Espuña, Antonio, 2015. "Improved time representation model for the simultaneous energy supply and demand management in microgrids," Energy, Elsevier, vol. 87(C), pages 615-627.
    13. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    14. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    15. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    16. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland K. & Kim, Hyun Jae & Park, Kihyun & Edward Yu, T., 2016. "Effects of electricity-price policy on electricity demand and manufacturing output," Energy, Elsevier, vol. 102(C), pages 324-334.
    17. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yulu & Zhang, Jingrui, 2020. "Three-layer day-ahead scheduling for active distribution network by considering multiple stakeholders," Energy, Elsevier, vol. 207(C).
    2. Snauwaert, Jakob & Vanhoucke, Mario, 2023. "A classification and new benchmark instances for the multi-skilled resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 1-19.
    3. Du, Yu & Li, Jun-qing, 2024. "A deep reinforcement learning based algorithm for a distributed precast concrete production scheduling," International Journal of Production Economics, Elsevier, vol. 268(C).
    4. Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    2. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    3. Li, Lanlan & Gong, Chengzhu & Tian, Shizhong & Jiao, Jianling, 2016. "The peak-shaving efficiency analysis of natural gas time-of-use pricing for residential consumers: Evidence from multi-agent simulation," Energy, Elsevier, vol. 96(C), pages 48-58.
    4. Cui, Weiwei & Li, Lin, 2018. "A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors," International Journal of Production Economics, Elsevier, vol. 201(C), pages 75-88.
    5. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    6. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    7. Guo, Dongmei & Li, Qin & Liu, Peng & Shi, Xunpeng & Yu, Jian, 2023. "Power shortage and firm performance: Evidence from a Chinese city power shortage index," Energy Economics, Elsevier, vol. 119(C).
    8. Alastaire S na ALINSATO, 2015. "Economic Valuation of Electrical Service Reliability for Households in Developing Country: A Censored Random Coefficient Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 352-359.
    9. Sulaima, Mohamad Fani & Dahlan, Nofri Yenita & Yasin, Zuhaila Mat & Rosli, Marlinda Mohd & Omar, Zulkiflee & Hassan, Mohammad Yusri, 2019. "A review of electricity pricing in peninsular Malaysia: Empirical investigation about the appropriateness of Enhanced Time of Use (ETOU) electricity tariff," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 348-367.
    10. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    11. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    13. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    14. Nezamoddini, Nasim & Wang, Yong, 2016. "Risk management and participation planning of electric vehicles in smart grids for demand response," Energy, Elsevier, vol. 116(P1), pages 836-850.
    15. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
    16. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    17. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2018. "Optimal sizing of distributed generation in gas/electricity/heat supply networks," Energy, Elsevier, vol. 151(C), pages 675-688.
    18. Charwand, Mansour & Gitizadeh, Mohsen, 2018. "Optimal TOU tariff design using robust intuitionistic fuzzy divergence based thresholding," Energy, Elsevier, vol. 147(C), pages 655-662.
    19. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    20. Wu, Kuei-Yen & Huang, Yun-Hsun & Wu, Jung-Hua, 2018. "Impact of electricity shortages during energy transitions in Taiwan," Energy, Elsevier, vol. 151(C), pages 622-632.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:619-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.