IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp883-891.html
   My bibliography  Save this article

Energy modeling using an effective latent variable based functional link learning machine

Author

Listed:
  • Zhang, Xiao-Han
  • Zhu, Qun-Xiong
  • He, Yan-Lin
  • Xu, Yuan

Abstract

With the increasing scale of modern petrochemical industries, energy modeling plays a more and more important role in energy-saving. However, it becomes more and more difficult to build accurate energy models due to the complicated characteristics of high nonlinearity, high dimension and strong coupling of modeling data. In order to tackle this problem, a novel latent variable based efficient functional link learning machine is proposed in this paper. In the proposed method, there are three salient features: first, a nonlinear function expansion block is used to extend the space of energy modeling data to highly nonlinear space for effectively solving the high nonlinear problem of energy modeling data; second, principal components based latent variables are extracted from the expanded space for removing redundant information; finally, an extreme learning algorithm based on generalized inverse is utilized to train the proposed model for achieving fast learning speed. To validate the performance of the proposed model, a case study of developing an energy model for a Purified Terephthalic Acid production process is carried out. Simulation results show that the proposed model can achieve not only extreme learning speed, but also acceptable accuracy.

Suggested Citation

  • Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling using an effective latent variable based functional link learning machine," Energy, Elsevier, vol. 162(C), pages 883-891.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:883-891
    DOI: 10.1016/j.energy.2018.08.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Hong-Fei & Chen, Zhong-Sheng & Zhu, Qun-Xiong & He, Yan-Lin, 2017. "A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries," Applied Energy, Elsevier, vol. 197(C), pages 405-415.
    2. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    3. Dong, Shengming & Zhang, Yufeng & He, Zhonglu & Deng, Na & Yu, Xiaohui & Yao, Sheng, 2018. "Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for performance prediction of the organic Rankine cycle system," Energy, Elsevier, vol. 144(C), pages 851-864.
    4. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    5. Quan, Hao & Srinivasan, Dipti & Khosravi, Abbas, 2014. "Uncertainty handling using neural network-based prediction intervals for electrical load forecasting," Energy, Elsevier, vol. 73(C), pages 916-925.
    6. Saygin, D. & Worrell, E. & Tam, C. & Trudeau, N. & Gielen, D.J. & Weiss, M. & Patel, M.K., 2012. "Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry," Energy, Elsevier, vol. 44(1), pages 1094-1106.
    7. Kusumo, F. & Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Siswantoro, J. & Mahlia, T.M.I., 2017. "Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks," Energy, Elsevier, vol. 134(C), pages 24-34.
    8. Zhu, Qun-Xiong & Zhang, Chen & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry," Applied Energy, Elsevier, vol. 213(C), pages 322-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Ge, Yunshan & Meng, Hao & Yang, Jinxin & Chang, Ke & Wang, Shuofeng, 2022. "Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine," Energy, Elsevier, vol. 248(C).
    2. Wang, Zheng-Xin & He, Ling-Yang & Zheng, Hong-Hao, 2019. "Forecasting the residential solar energy consumption of the United States," Energy, Elsevier, vol. 178(C), pages 610-623.
    3. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).
    4. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. do Carmo, Pedro R.X. & do Monte, João Victor L. & Filho, Assis T. de Oliveira & Freitas, Eduardo & Tigre, Matheus F.F.S.L. & Sadok, Djamel & Kelner, Judith, 2023. "A data-driven model for the optimization of energy consumption of an industrial production boiler in a fiber plant," Energy, Elsevier, vol. 284(C).
    6. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Improving energy efficiency prediction under aberrant measurement using deep compensation networks: A case study of petrochemical process," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuan & Zhang, Mingqing & Ye, Liangliang & Zhu, Qunxiong & Geng, Zhiqiang & He, Yan-Lin & Han, Yongming, 2018. "A novel prediction intervals method integrating an error & self-feedback extreme learning machine with particle swarm optimization for energy consumption robust prediction," Energy, Elsevier, vol. 164(C), pages 137-146.
    2. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
    3. Gong, Shixin & Shao, Cheng & Zhu, Li, 2019. "Multi-level and multi-granularity energy efficiency diagnosis scheme for ethylene production process," Energy, Elsevier, vol. 170(C), pages 1151-1169.
    4. Alexander Kramer & Fernando Morgado‐Dias, 2020. "Artificial intelligence in process control applications and energy saving: a review and outlook," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1133-1150, December.
    5. Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.
    6. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    7. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    8. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    9. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    10. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    11. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    12. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    13. Ke, Jing & Price, Lynn & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan, 2013. "Analysis and practices of energy benchmarking for industry from the perspective of systems engineering," Energy, Elsevier, vol. 54(C), pages 32-44.
    14. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    15. Yang, Dan & Peng, Xin & Ye, Zhencheng & Lu, Yusheng & Zhong, Weimin, 2021. "Domain adaptation network with uncertainty modeling and its application to the online energy consumption prediction of ethylene distillation processes," Applied Energy, Elsevier, vol. 303(C).
    16. Denilson Ferreira & João O. P. Pinto & Luiz E. B. da Silva & Marcio L. M. Kimpara & Luigi Galotto, 2022. "Elaboration of Energy Balance: A Model for the Brazilian States," Energies, MDPI, vol. 15(23), pages 1-17, November.
    17. Yang, YouLong & Che, JinXing & Li, YanYing & Zhao, YanJun & Zhu, SuLing, 2016. "An incremental electric load forecasting model based on support vector regression," Energy, Elsevier, vol. 113(C), pages 796-808.
    18. Fitranto Kusumo & T.M.I. Mahlia & A.H. Shamsuddin & Hwai Chyuan Ong & A.R Ahmad & Z. Ismail & Z.C. Ong & A.S. Silitonga, 2019. "The Effect of Multi-Walled Carbon Nanotubes-Additive in Physicochemical Property of Rice Brand Methyl Ester: Optimization Analysis," Energies, MDPI, vol. 12(17), pages 1-19, August.
    19. Fei-Yu Zhou & Ning-Jing Tao & Yu-Rong Zhang & Wei-Bin Yuan, 2023. "Prediction of Chloride Diffusion Coefficient in Concrete Based on Machine Learning and Virtual Sample Algorithm," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    20. Tan, Zhongfu & Wang, Guan & Ju, Liwei & Tan, Qingkun & Yang, Wenhai, 2017. "Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand r," Energy, Elsevier, vol. 124(C), pages 198-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:883-891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.