IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i6p1133-1150.html
   My bibliography  Save this article

Artificial intelligence in process control applications and energy saving: a review and outlook

Author

Listed:
  • Alexander Kramer
  • Fernando Morgado‐Dias

Abstract

This work summarizes selected applications of artificial neural networks and related solutions such as neuro‐fuzzy within different control loops such as the network predictive control regarding energy saving. It also shows such applications in the chemical industry and points out why further research on these applications regarding the control of distillation columns might be economically promising, as the world market in the chemical industry is expected to grow from 3.47 trillion euro in 2017 to about 6.6 trillion euro in 2030, the energy consumption might also rise. As not only companies in the chemical industry set up energy saving programs to reduce energy consumption and greenhouse gases, the consumption of energy decreased since 1990 in Europe. Compared to other countries like China, the energy prices in Europe – especially in Germany – have the highest prices due to taxes and governmental issues. Thus, research about applications with artificial intelligence in energy saving holds the promise of economic gain. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Alexander Kramer & Fernando Morgado‐Dias, 2020. "Artificial intelligence in process control applications and energy saving: a review and outlook," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1133-1150, December.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:6:p:1133-1150
    DOI: 10.1002/ghg.1962
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1962
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geng, Zhiqiang & Li, Hongda & Zhu, Qunxiong & Han, Yongming, 2018. "Production prediction and energy-saving model based on Extreme Learning Machine integrated ISM-AHP: Application in complex chemical processes," Energy, Elsevier, vol. 160(C), pages 898-909.
    2. Geng, ZhiQiang & Qin, Lin & Han, YongMing & Zhu, QunXiong, 2017. "Energy saving and prediction modeling of petrochemical industries: A novel ELM based on FAHP," Energy, Elsevier, vol. 122(C), pages 350-362.
    3. Han, Yongming & Geng, Zhiqiang & Zhu, Qunxiong & Qu, Yixin, 2015. "Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry," Energy, Elsevier, vol. 83(C), pages 685-695.
    4. Geng, Zhiqiang & Li, Yanan & Han, Yongming & Zhu, Qunxiong, 2018. "A novel self-organizing cosine similarity learning network: An application to production prediction of petrochemical systems," Energy, Elsevier, vol. 142(C), pages 400-410.
    5. Zhu, Qun-Xiong & Zhang, Chen & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry," Applied Energy, Elsevier, vol. 213(C), pages 322-333.
    6. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    7. Saygin, D. & Worrell, E. & Tam, C. & Trudeau, N. & Gielen, D.J. & Weiss, M. & Patel, M.K., 2012. "Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry," Energy, Elsevier, vol. 44(1), pages 1094-1106.
    8. Geng, Zhiqiang & Yang, Xiao & Han, Yongming & Zhu, Qunxiong, 2017. "Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: Application to complex chemical processes," Energy, Elsevier, vol. 120(C), pages 67-78.
    9. Zhou, Zhifang & Xiao, Tian & Chen, Xiaohong & Wang, Chang, 2016. "A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 304-315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Yongming & Wu, Hao & Geng, Zhiqiang & Zhu, Qunxiong & Gu, Xiangbai & Yu, Bin, 2020. "Review: Energy efficiency evaluation of complex petrochemical industries," Energy, Elsevier, vol. 203(C).
    2. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).
    3. Gong, Shixin & Shao, Cheng & Zhu, Li, 2019. "Multi-level and multi-granularity energy efficiency diagnosis scheme for ethylene production process," Energy, Elsevier, vol. 170(C), pages 1151-1169.
    4. Geng, Zhiqiang & Zhang, Yanhui & Li, Chengfei & Han, Yongming & Cui, Yunfei & Yu, Bin, 2020. "Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature," Energy, Elsevier, vol. 194(C).
    5. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    6. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    7. Zhu, Qun-Xiong & Zhang, Chen & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry," Applied Energy, Elsevier, vol. 213(C), pages 322-333.
    8. Mafakheri, Aso & Sulaimany, Sadegh & Mohammadi, Sara, 2023. "Predicting the establishment and removal of global trade relations for import and export of petrochemical products," Energy, Elsevier, vol. 269(C).
    9. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling using an effective latent variable based functional link learning machine," Energy, Elsevier, vol. 162(C), pages 883-891.
    10. Roychaudhuri, Pritam Sankar & Kazantzi, Vasiliki & Foo, Dominic C.Y. & Tan, Raymond R. & Bandyopadhyay, Santanu, 2017. "Selection of energy conservation projects through Financial Pinch Analysis," Energy, Elsevier, vol. 138(C), pages 602-615.
    11. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Improving energy efficiency prediction under aberrant measurement using deep compensation networks: A case study of petrochemical process," Energy, Elsevier, vol. 263(PC).
    12. Zhao, Bin & Ren, Yi & Gao, Diankui & Xu, Lizhi & Zhang, Yuanyuan, 2019. "Energy utilization efficiency evaluation model of refining unit Based on Contourlet neural network optimized by improved grey optimization algorithm," Energy, Elsevier, vol. 185(C), pages 1032-1044.
    13. Geng, Zhiqiang & Li, Hongda & Zhu, Qunxiong & Han, Yongming, 2018. "Production prediction and energy-saving model based on Extreme Learning Machine integrated ISM-AHP: Application in complex chemical processes," Energy, Elsevier, vol. 160(C), pages 898-909.
    14. Won, Jonghan & Baek, Seung Wook & Kim, Hyemin, 2018. "Autoignition and combustion behavior of emulsion droplet under elevated temperature and pressure conditions," Energy, Elsevier, vol. 163(C), pages 800-810.
    15. Bühler, Fabian & Guminski, Andrej & Gruber, Anna & Nguyen, Tuong-Van & von Roon, Serafin & Elmegaard, Brian, 2018. "Evaluation of energy saving potentials, costs and uncertainties in the chemical industry in Germany," Applied Energy, Elsevier, vol. 228(C), pages 2037-2049.
    16. Zhang, Lu & Cui, Li & Chen, Lujie & Dai, Jing & Jin, Ziyi & Wu, Hao, 2023. "A hybrid approach to explore the critical criteria of online supply chain finance to improve supply chain performance," International Journal of Production Economics, Elsevier, vol. 255(C).
    17. Ke, Jing & Price, Lynn & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan, 2013. "Analysis and practices of energy benchmarking for industry from the perspective of systems engineering," Energy, Elsevier, vol. 54(C), pages 32-44.
    18. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    19. Deng, Wenyueyang & Zhang, Zenglian & Guo, Borui, 2024. "Firm-level carbon risk awareness and Green transformation: A research on the motivation and consequences from government regulation and regional development perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    20. Song, Yazhi & Liu, Tiansen & Liang, Dapeng & Li, Yin & Song, Xiaoqiu, 2019. "A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market," Ecological Economics, Elsevier, vol. 157(C), pages 253-265.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:6:p:1133-1150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.