IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp1269-1286.html
   My bibliography  Save this article

Predictive management of cogeneration-based energy supply networks using two-stage multi-objective optimization

Author

Listed:
  • Wakui, Tetsuya
  • Sawada, Kento
  • Yokoyama, Ryohei
  • Aki, Hirohisa

Abstract

A predictive management system for cogeneration unit-based energy supply networks using two-stage multi-objective optimization was developed to tackle a trade-off between energy savings and operating cost reduction. The developed system integrated support vector regression-based energy demand prediction, MILP (mixed-integer linear programming)-based schedule planning, and rule-based operation control. The contribution is to develop two-stage MILP-based multi-objective schedule planning, which is extension of an ε-constraint method, and operation control rule of multiple cogeneration units. In the first-stage schedule planning, primary energy consumption in the prediction horizon is minimized, and a reduction rate of primary energy consumption is calculated. In the second-stage schedule planning, an operating cost is minimized additionally subject to satisfaction of partial achievement of the reduction rate of primary energy consumption calculated in the first stage. An energy-saving achievement rate is regarded as a decision-making parameter to control a trade-off between energy savings and cost reduction, of which definition is quantitatively apprehensible for decision makers. Annual operating simulation of an energy supply network using four fuel-cell-based cogeneration units revealed that the developed predictive management system has high controllability to the trade-off between the energy-saving rates (18.9%–21.6%) and the operating cost reduction rate (19.0%–15.6%), caused by a time-of-use power tariff structure.

Suggested Citation

  • Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2018. "Predictive management of cogeneration-based energy supply networks using two-stage multi-objective optimization," Energy, Elsevier, vol. 162(C), pages 1269-1286.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1269-1286
    DOI: 10.1016/j.energy.2018.08.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakui, Tetsuya & Yokoyama, Ryohei & Shimizu, Ken-ichi, 2010. "Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems," Energy, Elsevier, vol. 35(2), pages 740-750.
    2. Holjevac, Ninoslav & Capuder, Tomislav & Kuzle, Igor, 2015. "Adaptive control for evaluation of flexibility benefits in microgrid systems," Energy, Elsevier, vol. 92(P3), pages 487-504.
    3. Petrollese, Mario & Valverde, Luis & Cocco, Daniele & Cau, Giorgio & Guerra, José, 2016. "Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid," Applied Energy, Elsevier, vol. 166(C), pages 96-106.
    4. Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
    5. Moradi, Hadis & Esfahanian, Mahdi & Abtahi, Amir & Zilouchian, Ali, 2018. "Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system," Energy, Elsevier, vol. 147(C), pages 226-238.
    6. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    7. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    8. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    9. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    10. SoltaniNejad Farsangi, Alireza & Hadayeghparast, Shahrzad & Mehdinejad, Mehdi & Shayanfar, Heidarali, 2018. "A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs," Energy, Elsevier, vol. 160(C), pages 257-274.
    11. Majidi, Majid & Nojavan, Sayyad & Zare, Kazem, 2017. "A cost-emission framework for hub energy system under demand response program," Energy, Elsevier, vol. 134(C), pages 157-166.
    12. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    13. Nouri, Alireza & Khodaei, Hossein & Darvishan, Ayda & Sharifian, Seyedmehdi & Ghadimi, Noradin, 2018. "Optimal performance of fuel cell-CHP-battery based micro-grid under real-time energy management: An epsilon constraint method and fuzzy satisfying approach," Energy, Elsevier, vol. 159(C), pages 121-133.
    14. Wu, Jing-yi & Wang, Jia-long & Li, Sheng, 2012. "Multi-objective optimal operation strategy study of micro-CCHP system," Energy, Elsevier, vol. 48(1), pages 472-483.
    15. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    16. Aki, Hirohisa & Wakui, Tetsuya & Yokoyama, Ryohei & Sawada, Kento, 2018. "Optimal management of multiple heat sources in a residential area by an energy management system," Energy, Elsevier, vol. 153(C), pages 1048-1060.
    17. Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
    18. Parisio, Alessandra & Rikos, Evangelos & Tzamalis, George & Glielmo, Luigi, 2014. "Use of model predictive control for experimental microgrid optimization," Applied Energy, Elsevier, vol. 115(C), pages 37-46.
    19. Sanseverino, Eleonora Riva & Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & De Paola, Alessandra & Lo Re, Giuseppe, 2011. "An execution, monitoring and replanning approach for optimal energy management in microgrids," Energy, Elsevier, vol. 36(5), pages 3429-3436.
    20. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    21. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    22. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    23. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    2. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    2. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
    3. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    4. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    5. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    6. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2020. "A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition," Energy, Elsevier, vol. 197(C).
    7. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    8. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    9. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    10. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    11. Bahramara, Salah & Sheikhahmadi, Pouria & Golpîra, Hêmin, 2019. "Co-optimization of energy and reserve in standalone micro-grid considering uncertainties," Energy, Elsevier, vol. 176(C), pages 792-804.
    12. Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2017. "Development of an optimization based design framework for microgrid energy systems," Energy, Elsevier, vol. 140(P1), pages 340-351.
    13. Rech, S. & Lazzaretto, A., 2018. "Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy system," Energy, Elsevier, vol. 147(C), pages 742-756.
    14. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    15. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    16. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    17. Holjevac, Ninoslav & Capuder, Tomislav & Kuzle, Igor, 2015. "Adaptive control for evaluation of flexibility benefits in microgrid systems," Energy, Elsevier, vol. 92(P3), pages 487-504.
    18. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    19. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    20. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1269-1286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.